ﻻ يوجد ملخص باللغة العربية
Motivated by possible implications on the problem of moduli stabilization and other phenomenological aspects, we study D-brane instanton effects in flux compactifications. We focus on a local model and compute non-perturbative interactions generated by gauge and stringy instantons in a N = 1 quiver theory with gauge group U(N_0) x U(N_1) and matter in the bifundamentals. This model is engineered with fractional D3-branes at a C^3/(Z_2 x Z_2) singularity, and its non-perturbative sectors are described by introducing fractional D-instantons. We find a rich variety of instanton-generated F- and D-term interactions, ranging from superpotentials and Beasley-Witten like multi-fermion terms to non-supersymmetric flux-induced instanton interactions.
Chiral Effective Field Theory ($chi$EFT) has been extensively used to study the $NN$ interaction during the last three decades. In Effective Field Theories (EFTs) the renormalization is performed order by order including the necessary counter terms.
Recently, Berenstein et al. have proposed a duality between a sector of N=4 super-Yang-Mills theory with large R-charge J, and string theory in a pp-wave background. In the limit considered, the effective t Hooft coupling has been argued to be lambda
We illustrate the correspondence between the N=1 superstring compactifications with fluxes, the N=4 gauged supergravities and the superpotential and Kahler potential of the effective N=1 supergravity in four dimensions. In particular we derive, in th
In this thesis we investigate some aspects of quantum field theories from a holographic perspective. In the first chapters we examine in detail a one-paremeter family of three-dimensional gauge theories by means of their type IIA gravity duals. We an
We consider examples of D=4 string theory vacua which, although globally non-geometric, admit a local description in terms of D=10 supergravity backgrounds. We analyze such backgrounds and find that the supersymmetry spinors vary non-trivially along