ﻻ يوجد ملخص باللغة العربية
Recently, Berenstein et al. have proposed a duality between a sector of N=4 super-Yang-Mills theory with large R-charge J, and string theory in a pp-wave background. In the limit considered, the effective t Hooft coupling has been argued to be lambda=g_{YM}^2 N/J^2=1/(mu p^+ alpha)^2. We study Yang-Mills theory at small lambda (large mu) with a view to reproducing string interactions. We demonstrate that the effective genus counting parameter of the Yang-Mills theory is g_2^2=J^4/N^2=(4 pi g_s)^2 (mu p^+ alpha)^4, the effective two-dimensional Newton constant for strings propagating on the pp-wave background. We identify g_2 sqrt{lambda} as the effective coupling between a wide class of excited string states on the pp-wave background. We compute the anomalous dimensions of BMN operators at first order in g_2^2 and lambda and interpret our result as the genus one mass renormalization of the corresponding string state. We postulate a relation between the three-string vertex function and the gauge theory three-point function and compare our proposal to string field theory. We utilize this proposal, together with quantum mechanical perturbation theory, to recompute the genus one energy shift of string states, and find precise agreement with our earlier computation.
We consider two-dimensional Yang-Mills theories on arbitrary Riemann surfaces. We introduce a generalized Yang-Mills action, which coincides with the ordinary one on flat surfaces but differs from it in its coupling to two-dimensional gravity. The qu
The behaviour of matrix string theory in the background of a type IIA pp wave at small string coupling, g_s << 1, is determined by the combination M g_s where M is a dimensionless parameter proportional to the strength of the Ramond-Ramond background
We study the spectrum of anomalous dimensions of operators dual to giant graviton branes. The operators considered belong to the su$(2|3)$ sector of ${cal N}=4$ super Yang-Mills theory, have a bare dimension $sim N$ and are a linear combination of re
We discuss bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. We begin by finding convergence conditions for the partition and correlation functions. Moving on, we specialise to the SU(N) models with large N. In
We study the empirical realisation of the memory effect in Yang-Mills theory, especially in view of the classical vs. quantum nature of the theory. Gauge invariant analysis of memory in classical U(1) electrodynamics and its observation by total chan