ﻻ يوجد ملخص باللغة العربية
We present a general theory of entanglement-assisted quantum convolutional coding. The codes have a convolutional or memory structure, they assume that the sender and receiver share noiseless entanglement prior to quantum communication, and they are not restricted to possess the Calderbank-Shor-Steane structure as in previous work. We provide two significant advances for quantum convolutional coding theory. We first show how to expand a given set of quantum convolutional generators. This expansion step acts as a preprocessor for a polynomial symplectic Gram-Schmidt orthogonalization procedure that simplifies the commutation relations of the expanded generators to be the same as those of entangled Bell states (ebits) and ancilla qubits. The above two steps produce a set of generators with equivalent error-correcting properties to those of the original generators. We then demonstrate how to perform online encoding and decoding for a stream of information qubits, halves of ebits, and ancilla qubits. The upshot of our theory is that the quantum code designer can engineer quantum convolutional codes with desirable error-correcting properties without having to worry about the commutation relations of these generators.
We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum conv
Quantum error-correcting codes will be the ultimate enabler of a future quantum computing or quantum communication device. This theory forms the cornerstone of practical quantum information theory. We provide several contributions to the theory of qu
We discuss quantum capacities for two types of entanglement networks: $mathcal{Q}$ for the quantum repeater network with free classical communication, and $mathcal{R}$ for the tensor network as the rank of the linear operation represented by the tens
Multi-party local quantum operations with shared quantum entanglement or shared classical randomness are studied. The following facts are established: (i) There is a ball of local operations with shared randomness lying within the space spanned by
Quantum discord Q is a function of density matrix elements. The domain of such a function in the case of two-qubit system with X density matrix may consist of three subdomains at most: two ones where the quantum discord is expressed in closed analyti