ﻻ يوجد ملخص باللغة العربية
The recently developed algorithm FIRE performs the reduction of Feynman integrals to master integrals. It is based on a number of strategies, such as applying the Laporta algorithm, the s-bases algorithm, region-bases and integrating explicitly over loop momenta when possible. Currently it is being used in complicated three-loop calculations.
FIRE is a program performing reduction of Feynman integrals to master integrals. The C++ version of FIRE was presented in 2014. There have been multiple changes and upgrades since then including the possibility to use multiple computers for one reduc
For loop integrals, the standard method is reduction. A well-known reduction method for one-loop integrals is the Passarino-Veltman reduction. Inspired by the recent paper [1] where the tadpole reduction coefficients have been solved, in this paper w
New explicit expressions are derived for the one-loop two-point Feynman integral with arbitrary external momentum and masses $m_1^2$ and $m_2^2$ in D dimensions. The results are given in terms of Appell functions, manifestly symmetric with respect to
A method for reducing Feynman integrals, depending on several kinematic variables and masses, to a combination of integrals with fewer variables is proposed. The method is based on iterative application of functional equations proposed by the author.
A new approach to compute Feynman Integrals is presented. It relies on an integral representation of a given Feynman Integral in terms of simpler ones. Using this approach, we present, for the first time, results for a certain family of non-planar fi