ترغب بنشر مسار تعليمي؟ اضغط هنا

A massive Feynman integral and some reduction relations for Appell functions

107   0   0.0 ( 0 )
 نشر من قبل Mykola Shpot
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. A. Shpot




اسأل ChatGPT حول البحث

New explicit expressions are derived for the one-loop two-point Feynman integral with arbitrary external momentum and masses $m_1^2$ and $m_2^2$ in D dimensions. The results are given in terms of Appell functions, manifestly symmetric with respect to the masses $m_i^2$. Equating our expressions with previously known results in terms of Gauss hypergeometric functions yields reduction relations for the involved Appell functions that are apparently new mathematical results.



قيم البحث

اقرأ أيضاً

We study shift relations between Feynman integrals via the Mellin transform through parametric annihilation operators. These contain the momentum space IBP relations, which are well-known in the physics literature. Applying a result of Loeser and Sab bah, we conclude that the number of master integrals is computed by the Euler characteristic of the Lee-Pomeransky polynomial. We illustrate techniques to compute this Euler characteristic in various examples and compare it with numbers of master integrals obtained in previous works.
420 - M. Yu. Kalmykov 2009
We will present some (formal) arguments that any Feynman diagram can be understood as a particular case of a Horn-type multivariable hypergeometric function. The advantages and disadvantages of this type of approach to the evaluation of Feynman diagrams is discussed.
We describe the application of differential reduction algorithms for Feynman Diagram calculation. We illustrate the procedure in the context of generalized hypergeometric functions, and give an example for a type of q-loop bubble diagram.
99 - A.V. Smirnov 2008
The recently developed algorithm FIRE performs the reduction of Feynman integrals to master integrals. It is based on a number of strategies, such as applying the Laporta algorithm, the s-bases algorithm, region-bases and integrating explicitly over loop momenta when possible. Currently it is being used in complicated three-loop calculations.
130 - O. Gituliar , V. Magerya 2017
We present $text{Fuchsia}$ $-$ an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients $partial_x,mathbf{f}(x,epsilon) = mathbb{A}(x,epsilon),mathbf{f}(x,epsilon)$ finds a basis t ransformation $mathbb{T}(x,epsilon)$, i.e., $mathbf{f}(x,epsilon) = mathbb{T}(x,epsilon),mathbf{g}(x,epsilon)$, such that the system turns into the epsilon form: $partial_x, mathbf{g}(x,epsilon) = epsilon,mathbb{S}(x),mathbf{g}(x,epsilon)$, where $mathbb{S}(x)$ is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator $epsilon$. That makes the construction of the transformation $mathbb{T}(x,epsilon)$ crucial for obtaining solutions of the initial equations. In principle, $text{Fuchsia}$ can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا