ترغب بنشر مسار تعليمي؟ اضغط هنا

Model of Genetic Variation in Human Social Networks

240   0   0.0 ( 0 )
 نشر من قبل James Fowler
 تاريخ النشر 2009
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Social networks exhibit strikingly systematic patterns across a wide range of human contexts. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a mirror network method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative Attract and Introduce model with two simple forms of heterogeneity that generates significant heritability as well as other important network features. We show that the model is well suited to real social networks in humans. These results suggest that natural selection may have played a role in the evolution of social networks. They also suggest that modeling intrinsic variation in network attributes may be important for understanding the way genes affect human behaviors and the way these behaviors spread from person to person.



قيم البحث

اقرأ أيضاً

Here, we review the research we have done on social contagion. We describe the methods we have employed (and the assumptions they have entailed) in order to examine several datasets with complementary strengths and weaknesses, including the Framingha m Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a three degrees of influence property, and we review statistical approaches we have used to characterize inter-personal influence with respect to phenomena as diverse as obesity, smoking, cooperation, and happiness. We do not claim that this work is the final word, but we do believe that it provides some novel, informative, and stimulating evidence regarding social contagion in longitudinally followed networks. Along with other scholars, we are working to develop new methods for identifying causal effects using social network data, and we believe that this area is ripe for statistical development as current methods have known and often unavoidable limitations.
Epigenome modulation in response to the environment potentially provides a mechanism for organisms to adapt, both within and between generations. However, neither the extent to which this occurs, nor the molecular mechanisms involved are known. Here we investigate DNA methylation variation in Swedish Arabidopsis thaliana accessions grown at two different temperatures. Environmental effects on DNA methylation were limited to transposons, where CHH methylation was found to increase with temperature. Genome-wide association mapping revealed that the extensive CHH methylation variation was strongly associated with genetic variants in both cis and trans, including a major trans-association close to the DNA methyltransferase CMT2. Unlike CHH methylation, CpG gene body methylation (GBM) on the coding region of genes was not affected by growth temperature, but was instead strongly correlated with the latitude of origin. Accessions from colder regions had higher levels of GBM for a significant fraction of the genome, and this was correlated with elevated transcription levels for the genes affected. Genome-wide association mapping revealed that this effect was largely due to trans-acting loci, a significant fraction of which showed evidence of local adaptation. These findings constitute the first direct link between DNA methylation and adaptation to the environment, and provide a basis for further dissecting how environmentally driven and genetically determined epigenetic variation interact and influence organismal fitness.
Linear mixed models (LMMs) are a powerful and established tool for studying genotype-phenotype relationships. A limiting assumption of LMMs is that the residuals are Gaussian distributed, a requirement that rarely holds in practice. Violations of thi s assumption can lead to false conclusions and losses in power, and hence it is common practice to pre-process the phenotypic values to make them Gaussian, for instance by applying logarithmic or other non-linear transformations. Unfortunately, different phenotypes require different specific transformations, and choosing a good transformation is in general challenging and subjective. Here, we present an extension of the LMM that estimates an optimal transformation from the observed data. In extensive simulations and applications to real data from human, mouse and yeast we show that using such optimal transformations lead to increased power in genome-wide association studies and higher accuracy in heritability estimates and phenotype predictions.
With the growing amount of mobile social media, offline ephemeral social networks (OffESNs) are receiving more and more attentions. Offline ephemeral social networks (OffESNs) are the networks created ad-hoc at a specific location for a specific purp ose and lasting for short period of time, relying on mobile social media such as Radio Frequency Identification (RFID) and Bluetooth devices. The primary purpose of people in the OffESNs is to acquire and share information via attending prescheduled events. Event Recommendation over this kind of networks can facilitate attendees on selecting the prescheduled events and organizers on making resource planning. However, because of lack of users preference and rating information, as well as explicit social relations, both rating based traditional recommendation methods and social-trust based recommendation methods can no longer work well to recommend events in the OffESNs. To address the challenges such as how to derive users latent preferences and social relations and how to fuse the latent information in a unified model, we first construct two heterogeneous interaction social networks, an event participation network and a physical proximity network. Then, we use them to derive users latent preferences and latent networks on social relations, including like-minded peers, co-attendees and friends. Finally, we propose an LNF (Latent Networks Fusion) model under a pairwise factor graph to infer event attendance probabilities for recommendation. Experiments on an RFID-based real conference dataset have demonstrated the effectiveness of the proposed model compared with typical solutions.
91 - Abigail Z. Jacobs 2018
In-depth studies of sociotechnical systems are largely limited to single instances. Network surveys are expensive, and platforms vary in important ways, from interface design, to social norms, to historical contingencies. With single examples, we can not in general know how much of observed network structure is explained by historical accidents, random noise, or meaningful social processes, nor can we claim that network structure predicts outcomes, such as organization success or ecosystem health. Here, I show how we can adopt a comparative approach for settings where we have, or can cleverly construct, multiple instances of a network to estimate the natural variability in social systems. The comparative approach makes previously untested theories testable. Drawing on examples from the social networks literature, I discuss emerging directions in the study of populations of sociotechnical systems using insights from organization theory and ecology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا