ﻻ يوجد ملخص باللغة العربية
We review latest progress in gaseous photomultipliers (GPM) combining solid photocathodes and various types of novel electron multipliers. Cascaded gaseous electron multipliers (GEM) coated with CsI photocathodes can efficiently replace UVsensitive wire chambers for single-photon recording in Cherenkov and other detectors. Other hole-multipliers with patterned electrodes (Micro-Hole and Strip Plates) and improved ion-blocking properties are discussed; these permit reducing considerably photon- and ion-induced secondary effects. Photon detectors with other electron-multiplier techniques are briefly described, among them GPMs based on Micromegas, capillary-plates, Thick-GEMs and resistive Thick GEMs. The two latter techniques, robust and economically produced, are particularly suited for large-area GPM applications, e.g. in RICH. Cascaded hole-multipliers with very high ion-blocking performance permitted the development and the first demonstration of DC-operated visible-sensitive gaseous photomultipliers with bialkali photocathodes and single-photon sensitivity. Recent progress is described in GPMs operated at cryogenic temperatures for rare-event noble-liquid detectors and medical imaging.
The properties of UV-photon imaging detectors consisting of CsI-coated THGEM electron multipliers are summarized. New results related to detection of Cherenkov light (RICH) and scintillation photons in noble liquid are presented.
We report on the progress in the study of cascaded GEM and GEM/MHSP gas avalanche photomultipliers operating at atmospheric pressure, with CsI and bialkali photocathodes. They have single-photon sensitivity, ns time resolution and good localization p
A novel concept for ion blocking in gas-avalanche detectors was developed, comprising cascaded micro-hole electron multipliers with patterned electrodes for ion defocusing. This leads to ion blocking at the 10^{-4} level, in DC mode, in operation con
Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos extremely elusive nature. Depending on the detector light yield, sev
Reflectance of silicon photomultipliers (SiPMs) is an important aspect to understand the large scale SiPM-based detector systems and evaluate the performance of SiPMs. We report the reflactance of two SiPMs, NUV-HD-lowCT and S14160-60-50HS manufactur