ﻻ يوجد ملخص باللغة العربية
Scanning tunneling microscopy and spectroscopy (STM/S) measurements in the superconducting dichalcogenide 2H-NbS2 show a peculiar superconducting density of states with two well defined features at 0.97 meV and 0.53 meV, located respectively above and below the value for the superconducting gap expected from single band s-wave BCS model (D=1.76kBTc=0.9 meV). Both features have a continuous temperature evolution and disappear at Tc = 5.7 K. Moreover, we observe the hexagonal vortex lattice with radially symmetric vortices and a well developed localized state at the vortex cores. The sixfold star shape characteristic of the vortex lattice of the compound 2H-NbSe2 is, together with the charge density wave order (CDW), absent in 2H-NbS2.
We present measurements of the superconducting critical temperature Tc and upper critical field Hc2 as a function of pressure in the transition metal dichalcogenide 2H-NbS2 up to 20 GPa. We observe that Tc increases smoothly from 6K at ambient pressu
Superconducting vortex cores have been extensively studied for magnetic fields applied perpendicular to the surface by mapping the density of states (DOS) through Scanning Tunneling Microscopy (STM). Vortex core shapes are often linked to the superco
We report $^{77}$Se NMR data in the normal and superconducting states of a single crystal of FeSe for several different field orientations. The Knight shift is suppressed in the superconducting state for in-plane fields, but does not vanish at zero t
We report unusual jamming in driven ordered vortex flow in 2H-NbS2. Reinitiating movement in these jammed vortices with a higher driving force, and halting it thereafter once again with a reduction in drive, unfolds a critical behavior centered aroun
Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of th