ترغب بنشر مسار تعليمي؟ اضغط هنا

Local spin-density-wave order inside vortex cores in multiband superconductors

461   0   0.0 ( 0 )
 نشر من قبل Vivek Mishra
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. Here we consider the internal vortex structure in a two-band s$_pm$ superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassical Eilenberger formalism. We study the structure of the s$_pm$ superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. We examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.



قيم البحث

اقرأ أيضاً

Neutron diffraction studies of Ba(Fe[1-x]Co[x])2As2 reveal that commensurate antiferromagnetic order gives way to incommensurate magnetic order for Co compositions between 0.056 < x < 0.06. The incommensurability has the form of a small transverse sp litting (0, +-e, 0) from the nominal commensurate antiferromagnetic propagation vector Q[AFM] = (1, 0, 1) (in orthorhombic notation) where e = 0.02-0.03 and is composition dependent. The results are consistent with the formation of a spin-density wave driven by Fermi surface nesting of electron and hole pockets and confirm the itinerant nature of magnetism in the iron arsenide superconductors.
The competing orders in the particle-particle (P-P) channel and the particle-hole (P-H) channel have been proposed separately to explain the pseudogap physics in cuprates. By solving the Bogoliubov-deGennes equation self-consistently, we show that th ere is a general complementary connection between the d-wave checkerboard order (DWCB) in the particle-hole (P-H) channel and the pair density wave order (PDW) in the particle-particle (P-P) channel. A small pair density localization generates DWCB and PDW orders simultaneously. The result suggests that suppressing superconductivity locally or globally through phase fluctuation should induce both orders in underdoped cuprates. The presence of both DWCB and PDW orders with $4a times 4a$ periodicity can explain the checkerboard modulation observed in FT-STS from STM and the puzzling dichotomy between the nodal and antinodal regions as well as the characteristic features such as non-dispersive Fermi arc in the pseudogap state.
We calculate the density of states of a disordered inhomogeneous d-wave superconductor in a magnetic field. The field-induced vortices are assumed to be pinned at random positions and the effects of the scattering of the quasi-particles off the vorti ces are taken into account using the singular gauge transformation of Franz and Tesanovic. We find two regimes for the density of states: at very low energies the density of states follows a law rho(epsilon) sim rho_0 + |epsilon|^{alpha} where the exponent is close to 1. A good fit of the density of states is obtained at higher energies, excluding a narrow region around the origin, with a similar power law energy dependence but with alpha close to 2. Both at low and at higher energies rho_0 scales with the inverse of the magnetic length (sqrt{B}).
Disorder - impurities and defects violating an ideal order - is always present in solids. It can result in interesting and sometimes unexpected effects in multiband superconductors. Especially if the superconductivity is unconventional thus having ot her than the usual s-wave symmetry. This paper uses the examples of iron-based pnictides and chalcogenides to examine how both nonmagnetic and magnetic impurities affect superconducting states with $s_pm$ and $s_{++}$ order parameters. We show that disorder causes the transitions between $s_pm$ and $s_{++}$ states and examine observable effects these transitions can produce.
A single impurity problem is investigated for multiband s-wave superconductors with different sign order parameters (+-s-wave superconductors) suggested in Fe-pnictide superconductors. Not only intraband but also interband scattering is considered at the impurity. The latter gives rise to impurity-induced local boundstates close to the impurity. We present an exact form of the energy of the local boundstates as a function of strength of the two types of impurity scattering. The essential role of the impurity is unchanged in finite number of impurities. The main conclusions for a single impurity problem help us understand effects of dense impurities in the +-s-wave superconductors. Local density of states around the single impurity is also investigated. We suggest impurity site nuclear magnetic resonance as a suitable experiment to probe the local boundstates that is peculiar to the +-s-wave state. We find that the +-s-wave model is mapped to a chiral dx2-y2+-idxy-wave, reflecting the unconventional nature of the sign reversing order parameter. For a quantum magnetic impurity, interband scattering destabilizes the Kondo singlet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا