ترغب بنشر مسار تعليمي؟ اضغط هنا

The supersingular locus in Siegel modular varieties with Iwahori level structure

167   0   0.0 ( 0 )
 نشر من قبل Ulrich Goertz
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study moduli spaces of abelian varieties in positive characteristic, more specifically the moduli space of principally polarized abelian varieties on the one hand, and the analogous space with Iwahori type level structure, on the other hand. We investigate the Ekedahl-Oort stratification on the former, the Kottwitz-Rapoport stratification on the latter, and their relationship. In this way, we obtain structural results about the supersingular locus in the case of Iwahori level structure, for instance a formula for its dimension in case $g$ is even.



قيم البحث

اقرأ أيضاً

209 - Yifeng Liu , Yichao Tian 2017
This article has three goals. First, we generalize the result of Deuring and Serre on the characterization of supersingular locus of modular curves to all Shimura varieties given by totally indefinite quaternion algebras over totally real number fiel ds. Second, we generalize the result of Ribet on arithmetic level raising to such Shimura varieties in the inert case. Third, as an application to number theory, we use the previous results to study the Selmer group of certain triple product motive of an elliptic curve, in the context of the Bloch--Kato conjecture.
221 - Jonas Bergstrom , Carel Faber , 2008
We study the cohomology of certain local systems on moduli spaces of principally polarized abelian surfaces with a level 2 structure. The trace of Frobenius on the alternating sum of the etale cohomology groups of these local systems can be calculate d by counting the number of pointed curves of genus 2 with a prescribed number of Weierstrass points over the given finite field. This cohomology is intimately related to vector-valued Siegel modular forms. The corresponding scheme in level 1 was carried out in [FvdG]. Here we extend this to level 2 where new phenomena appear. We determine the contribution of the Eisenstein cohomology together with its S_6-action for the full level 2 structure and on the basis of our computations we make precise conjectures on the endoscopic contribution. We also make a prediction about the existence of a vector-valued analogue of the Saito-Kurokawa lift. Assuming these conjectures that are based on ample numerical evidence, we obtain the traces of the Hecke-operators T(p) for p < 41 on the remaining spaces of `genuine Siegel modular forms. We present a number of examples of 1-dimensional spaces of eigenforms where these traces coincide with the Hecke eigenvalues. We hope that the experts on lifting and on endoscopy will be able to prove our conjectures.
217 - Ulrich Goertz , Chia-Fu Yu 2008
We investigate Siegel modular varieties in positive characteristic with Iwahori level structure. On these spaces, we have the Newton stratification, and the Kottwitz-Rapoport stratification; one would like to understand how these stratifications are related to each other. We give a simple description of all KR strata which are entirely contained in the supersingular locus as disjoint unions of Deligne-Lusztig varieties. We also give an explicit numerical description of the KR stratification in terms of abelian varieties.
We give an explicit conjectural formula for the motivic Euler characteristic of an arbitrary symplectic local system on the moduli space A_3 of principally polarized abelian threefolds. The main term of the formula is a conjectural motive of Siegel m odular forms of a certain type; the remaining terms admit a surprisingly simple description in terms of the motivic Euler characteristics for lower genera. The conjecture is based on extensive counts of curves of genus three and abelian threefolds over finite fields. It provides a lot of new information about vector-valued Siegel modular forms of degree three, such as dimension formulas and traces of Hecke operators. We also use it to predict several lifts from genus 1 to genus 3, as well as lifts from G_2 and new congruences of Harder type.
224 - Gerard van der Geer 2021
This is a survey based on the construction of Siegel modular forms of degree 2 and 3 using invariant theory in joint work with Fabien Clery and Carel Faber.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا