ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth and characterization of A_{1-x}K_xFe_2As_2 (A = Ba, Sr) single crystals with x=0 - 0.4

254   0   0.0 ( 0 )
 نشر من قبل Huiqian Luo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single crystals of A$_{1-x}$K$_x$Fe$_2$As$_2$ (A=Ba, Sr) with high quality have been grown successfully by FeAs self-flux method. The samples have sizes up to 4 mm with flat and shiny surfaces. The X-ray diffraction patterns suggest that they have high crystalline quality and c-axis orientation. The non-superconducting crystals show a spin-density-wave (SDW) instability at about 173 K and 135 K for Sr-based and Ba-based compound, respectively. After doping K as the hole dopant into the BaFe$_2$As$_2$ system, the SDW transition is smeared, and superconducting samples with the compound of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ (0 $< x leqslant$ 0.4) are obtained. The superconductors characterized by AC susceptibility and resistivity measurements exhibit very sharp superconducting transition at about 36 K, 32 K, 27 K and 23 K for x= 0.40,0.28,0.25 and 0.23, respectively.



قيم البحث

اقرأ أيضاً

We report the successful synthesis of FeSe$_{1-x}$S$_{x}$ single crystals with $x$ ranging from 0 to 1 via a hydrothermal method. A complete phase diagram of FeSe$_{1-x}$S$_{x}$ has been obtained based on resistivity and magnetization measurements. T he nematicity is suppressed with increasing $x$, and a small superconducting dome appears within the nematic phase. Outside the nematic phase, the superconductivity is continuously suppressed and reaches a minimum $T_c$ at $x$ = 0.45; beyond this point, $T_c$ slowly increases until $x$ = 1. Intriguingly, an anomalous resistivity upturn with a characteristic temperature $T^*$ in the intermediate region of $0.31 leq x leq 0.71$ is observed. $T^{*}$ shows a dome-like behavior with a maximum value at $x$ = 0.45, which is opposite the evolution of $T_c$, indicating competition between $T^*$ and superconductivity. The origin of $T^*$ is discussed in detail. Furthermore, the normal state resistivity evolves from non-Fermi-liquid to Fermi-liquid behavior with S doping at low temperatures, accompanied by a reduction in electronic correlations. Our study addresses the lack of single crystals in the high-S doping region and provides a complete phase diagram, which will promote the study of relations among nematicity, superconductivity, and magnetism.
We report on the evidence for the multiband electronic transport in $alpha$-YbAlB$_{4}$ and $alpha$-Yb$_{0.81(2)}$Sr$_{0.19(3)}$AlB$_{4}$. Multiband transport reveals itself below 10 K in both compounds via Hall effect measurements, whereas anisotrop ic magnetic ground state sets in below 3 K in $alpha$-Yb$_{0.81(2)}$Sr$_{0.19(3)}$AlB$_{4}$. Our results show that Sr$^{2+}$ substitution enhances conductivity, but does not change the quasiparticle mass of bands induced by heavy fermion hybridization.
122 - V.N. Zverev 2009
The transport and superconducting properties of Ba_{1-x}K_xFe_2As_2 single crystals with T_c = 31 K were studied. Both in-plane and out-of plane resistivity was measured by modified Montgomery method. The in-plane resistivity for all studied samples, obtained in the course of the same synthesis, is almost the same, unlike to the out-of plane resistivity, which differ considerably. We have found that the resistivity anisotropy gamma=rho_c /rho_{ab} is almost temperature independent and lies in the range 10-30 for different samples. This, probably, indicates on the extrinsic nature of high out-of-plane resistivity, which may appear due to the presence of the flat defects along Fe-As layers in the samples. This statement is supported by comparatively small effective mass anisotropy, obtained from the upper critical field measurements, and from the observation of the so-called Friedel transition, which indicates on the existence of some disorder in the samples in c-direction.
122 - S. W. Zhang , L. Ma , Y. D. Hou 2009
We performed $^{75}$As NMR studies on two overdoped high-quality Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ (x=0.7 and 1.0) single crystals. In the normal states, we found a dramatic increase of the spin-lattice relaxation ($1/^{75}T_1$) from the x=0.7 to the x=1 .0 samples. In KFe$_2$As$_2$, the ratio of $1/^{75}T_1TK_n^2$, where $^{75}K_n$ is the Knight shift, increases as temperature drops. These results indicate the existence of a new type of spin fluctuations in KFe$_2$As$_2$ which is accustomed to being treated as a simple Fermi liquid. In the superconducting state, we observe a step-like feature in the temperature dependence of the spin-lattice relaxation of the x=0.7 sample, which supports a two-gap superconductivity as the underdoped materials. However, the temperature scalings of $1/^{75}T_1$ below Tc in the overdoped samples are significantly different from those in the under or optimal doped ones. A power-law scaling behavior $1/^{75}T_1Tsim T^{0.5}$ is observed, which indicates universal strong low energy excitations in the overdoped hole-type superconductors.
Single crystals of Ba(Fe_(1-x)Mn_x)_2As_2, 0<x<0.148, have been grown and characterized by structural, magnetic, electrical transport and thermopower measurements. Although growths of single crystals of Ba(Fe_(1-x)Mn_x)_2As_2 for the full 0<=x<=1 ran ge were made, we find evidence for phase separation (associated with some form of immiscibility) starting for x>0.1-0.2. Our measurements show that whereas the structural/magnetic phase transition found in pure BaFe_2As_2 at 134 K is initially suppressed by Mn substitution, superconductivity is not observed at any substitution level. Although the effect of hydrostatic pressure up to 20 kbar in the parent BaFe_2As_2 compound is to suppress the structural/magnetic transition at the approximate rate of 0.9 K/kbar, the effects of pressure and Mn substitution in the x=0.102 compound are not cumulative. Phase diagrams of transition temperature versus substitution concentration, x, based on electrical transport, magnetization and thermopower measurements have been constructed and compared to those of the Ba(Fe_(1-x)TM_x)_2As_2 (TM=Co and Cr) series.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا