ترغب بنشر مسار تعليمي؟ اضغط هنا

75As NMR study of single crystals of the heavily overdoped pnictide superconductors Ba{1-x}KxFe2As2 (x = 0.7 and 1)

130   0   0.0 ( 0 )
 نشر من قبل Weiqiang Yu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed $^{75}$As NMR studies on two overdoped high-quality Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ (x=0.7 and 1.0) single crystals. In the normal states, we found a dramatic increase of the spin-lattice relaxation ($1/^{75}T_1$) from the x=0.7 to the x=1.0 samples. In KFe$_2$As$_2$, the ratio of $1/^{75}T_1TK_n^2$, where $^{75}K_n$ is the Knight shift, increases as temperature drops. These results indicate the existence of a new type of spin fluctuations in KFe$_2$As$_2$ which is accustomed to being treated as a simple Fermi liquid. In the superconducting state, we observe a step-like feature in the temperature dependence of the spin-lattice relaxation of the x=0.7 sample, which supports a two-gap superconductivity as the underdoped materials. However, the temperature scalings of $1/^{75}T_1$ below Tc in the overdoped samples are significantly different from those in the under or optimal doped ones. A power-law scaling behavior $1/^{75}T_1Tsim T^{0.5}$ is observed, which indicates universal strong low energy excitations in the overdoped hole-type superconductors.



قيم البحث

اقرأ أيضاً

Here we apply high resolution angle-resolved photoemission spectroscopy (ARPES) using a wide excitation energy range to probe the electronic structure and the Fermi surface topology of the Ba1-xKxFe2As2 (Tc = 32 K) superconductor. We find significant deviations in the low energy band structure from that predicted in calculations. A set of Fermi surface sheets with unexpected topology is detected at the Brillouin zone boundary. At the X-symmetry point the Fermi surface is formed by a shallow electron-like pocket surrounded by four hole-like pockets elongated in G-X and G-Y directions.
We investigate the pairing symmetry in heavily overdoped Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$ based on the spin-fluctuation mechanism. The exotic octet nodes of the superconducting gap and the unusual evolution of the gap with doping observed by the rec ent experiments are well explained in a unified manner. We demonstrate that the scatterings of electrons on the Fermi patches is mainly responsible for the incommensurate spin fluctuations and consequently the Fermi-surface-dependent multi-gap structure, since the Fermi level is close to the flat band. In addition, we find that a $d$-wave pairing state will prevail over the s-wave pairing state around the Lifshitz transition point.
186 - N. Ni , A. Thaler , A. Kracher 2009
Single crystalline Ba(Fe(1-x)TMx)2As2 (TM = Rh, Pd) series have been grown and characterized by structural, thermodynamic and transport measurements. These measurements show that the structural/magnetic phase transitions, found in pure BaFe2As2 at 13 4 K, are suppressed monotonically by the doping and that superconductivity can be stablized over a dome-like region. Temperature-composition (T-x) phase diagrams based on electrical transport and magnetization measurements are constructed and compared to those of the Ba(Fe(1-x)TMx)2As2 (TM = Co, Ni) series. Despite the generic difference between 3d and 4d shells and the specific, conspicuous differences in the changes to the unit cell parameters, the effects of Rh doping are exceptionally similar to the effects of Co doping and the effects of Pd doping are exceptionally similar to the effects of Ni doping. These data show that whereas the structural / antiferromagnetic phase transition temperatures can be parameterized by x and the superconducting transition temperature can be parameterized by some combination of x and e, the number of extra electrons associated with the TM doping, the transition temperatures of 3d- and 4d- doped BaFe2As2 can not be simply parameterized by the changes in the unit cell dimensions or their ratios.
565 - T. Hajiri , T. Ito , M. Matsunami 2014
We observed the anisotropic superconducting-gap (SC-gap) structure of a slightly overdoped superconductor, Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ ($x=0.1$), using three-dimensional (3D) angle-resolved photoemission spectroscopy. Two hole Fermi surfaces (FSs) observed at the Brillouin zone center and an inner electron FS at the zone corner showed a nearly isotropic SC gap in 3D momentum space. However, the outer electron FS showed an anisotropic SC gap with nodes or gap minima around the M and A points. The different anisotropies obtained the SC gap between the outer and inner electron FSs cannot be expected from all theoretical predictions with spin fluctuation, orbital fluctuation, and both competition. Our results provide a new insight into the SC mechanisms of iron pnictide superconductors.
273 - Peng Cheng , Huan Yang , Ying Jia 2008
Hall effect and magnetoresistance have been measured on single crystals of $NdFeAsO_{1-x}F_{x}$ with x = 0 ($T_c$ = 0 $ $K) and x = 0.18 ($T_c$ = 50 $ $K). For the undoped samples, strong Hall effect and magnetoresistance with strong temperature depe ndence were found below about 150 K. The magnetoresistance was found to be as large as 30% at 15 K at a magnetic field of 9 T. From the transport data we found that the transition near 155 K was accomplished in two steps: first one occurs at 155 K which may be associated with the structural transition, the second one takes place at about 140 K which may correspond to the spin-density wave like transition. In the superconducting sample with $T_c$ = 50 $ $K, it is found that the Hall coefficient also reveals a strong temperature dependence with a negative sign. But the magnetoresistance becomes very weak and does not satisfy the Kohlers scaling law. These dilemmatic results (strong Hall effect and very weak magnetoresistance) prevent to understand the normal state electric conduction by a simple multi-band model by taking account the electron and hole pockets. Detailed analysis further indicates that the strong temperature dependence of $R_H$ cannot be easily understood with the simple multi-band model either. A picture concerning a suppression to the density of states at the Fermi energy in lowering temperature is more reasonable. A comparison between the Hall coefficient of the undoped sample and the superconducting sample suggests that the doping may remove the nesting condition for the formation of the SDW order, since both samples have very similar temperature dependence above 175 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا