ﻻ يوجد ملخص باللغة العربية
Using the GALEX ultraviolet imagers we have observed a region of nebulosity first identified as starlight scattered by interstellar dust by Sandage (1976). Apart from airglow and zodiacal emission, we have found a diffuse UV background of between 500 and 800 phunit in both the galex FUV (1350 -- 1750 AA) and NUV (1750 -- 2850 AA). Of this emission, up to 250 phunit is due to htwo fluorescent emission in the FUV band; the remainder is consistent with scattering from interstellar dust. We have estimated the optical constants to be $a = 0.3; g = 0.7$ in the FUV and $a = 0.5; g = 0.7$ in the NUV, implying highly forward scattering grains, plus an extragalactic contribution of as much as 150 phunit. These are the highest spatial resolution observations of the diffuse UV background to date and show an intrinsic scatter beyond that expected from instrumental noise alone. Further modeling is required to understand the nature of this scatter and its implications for the ISM.
The weak, turbulent magnetic fields that supposedly permeate most of the solar photosphere are difficult to observe, because the Zeeman effect is virtually blind to them. The Hanle effect, acting on the scattering polarization in suitable lines, can
We present near ultraviolet (NUV:1750 - 2800AA) and far ultraviolet (FUV: 1350 - 1750AA) light-curves for flares on 4 nearby dMe-type stars (GJ 3685A, CR Dra, AF Psc and SDSS J084425.9+513830.5) observed with the GALEX satellite. Taking advantage of
We summarize some of the compelling new scientific opportunities for understanding stars and stellar systems that can be enabled by sub-milliarcsec (sub-mas) angular resolution, UV-Optical spectral imaging observations, which can reveal the details o
We present GALEX far-ultraviolet (FUV, $lambda_{eff}$=1538 AA) and near-ultraviolet (NUV, $lambda_{eff}$=2316 AA) surface photometry of 40 early-type galaxies (ETGs) selected from a wider sample of 65 nearby ETGs showing emission lines in their optic
We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal FeXII 1349.4A emission at unprecedented high spatial resolution (~0.33). We find that by using approp