ﻻ يوجد ملخص باللغة العربية
Measurements of the critical current density (Jc) by magnetization and the upper critical field (Hc2) by magnetoresistance have been performed for hafnium-doped MgB2. There has been a remarkable enhancement of Jc as compared to that by ion irradiation without any appreciable decrease in Tc, which is beneficial from the point of view of applications. The irreversibility line extracted from Jc shows an upward shift. In addition, there has been an increase in the upper critical field which indicates that Hf partially substitutes for Mg. Hyperfine interaction parameters obtained from time differential perturbed angular correlation (TDPAC) measurements revealed the formation of HfB and HfB2 phases along with the substitution of Hf. A possible explanation is given for the role of these species in the enhancement of Jc in MgB2 superconductor.
MoSi2 doped MgB2 tapes with different doping levels were prepared through the in-situ powder-in-tube method using Fe as the sheath material. Effect of MoSi2 doping on the MgB2/Fe tapes was investigated. It is found that the highest JC value was achie
The use of MgB2 in superconducting applications still awaits for the development of a MgB2-based material where both current-carrying performance and critical magnetic field are optimized simultaneously. We achieved this by doping MgB2 with double-wa
Doping of MgB2 by nano-SiC and its potential for improvement of flux pinning was studied for MgB2-x(SiC)x/2 with x = 0, 0.2 and 0.3 and a 10wt% nano-SiC doped MgB2 samples. Co-substitution of B by Si and C counterbalanced the effects of single-elemen
The effect of nanoscale-SiC doping of MgB2 was investigated using transport and magnetic measurements. It was found that there is a clear correlation between the critical temperature Tc, the resistivity r, the residual resistivity ratio, RRR = R(300K
A strong effect of sample size on magnetic Jc(H) was observed for bulk MgB2 when Jc is obtained directly from the critical state model. Thus obtained zero-field Jc (Jc0) decreases strongly with the sample size, attaining a constant value for the samp