ﻻ يوجد ملخص باللغة العربية
Spin valve systems based on the giant magnetoresistive (GMR) effect as used for example in hard disks and automotive applications consist of several functional metallic thin film layers. We have identified by secondary ion mass spectrometry (SIMS) two main degradation mechanisms: One is related to oxygen diffusion through a protective cap layer, and the other one is interdiffusion directly at the functional layers of the GMR stack. By choosing a suitable material as cap layer (TaN), the oxidation effect can be suppressed.
Giant magneto-Seebeck (GMS) effect was observed in Co/Cu/Co and NiFe/Cu/Co spin valves. Their Seebeck coefficients in parallel state was larger than that in antiparallel state, and GMS ratio defined as (SAP-SP)/SP could reach -9% in our case. The GMS
We present measurements of pure spin current absorption on lateral spin valves. By varying the width of the absorber we demonstrate that spin current absorption measurements enable to characterize efficiently the spin transport properties of ferromag
The field of spin electronics (spintronics) was initiated by the discovery of giant magnetoresistance (GMR) for which Fert[1] and Grunberg[2] were awarded the 2007 Nobel Prize for Physics. GMR arises from differential scattering of the majority and m
The spin absorption process in a ferromagnetic material depends on the spin orientation relativelyto the magnetization. Using a ferromagnet to absorb the pure spin current created within a lateralspin-valve, we evidence and quantify a sizeable orient
We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with conductivity of Py is observed,