ﻻ يوجد ملخص باللغة العربية
In this paper we derive the probability of the radial profiles of spherically symmetric inhomogeneities in order to provide an improved estimation of the number density of primordial black holes (PBHs). We demonstrate that the probability of PBH formation depends sensitively on the radial profile of the initial configuration. We do this by characterising this profile with two parameters chosen heuristically: the amplitude of the inhomogeneity and the second radial derivative, both evaluated at the centre of the configuration. We calculate the joint probability of initial cosmological inhomogeneities as a function of these two parameters and then find a correspondence between these parameters and those used in numerical computations of PBH formation. Finally, we extend our heuristic study to evaluate the probability of PBH formation taking into account for the first time the radial profile of curvature inhomogeneities.
Primordial black holes (PBHs) are an important tool in cosmology to probe the primordial spectrum of small-scale curvature perturbations that reenter the cosmological horizon during radiation domination epoch. We numerically solve the evolution of sp
We calculate the exact formation probability of primordial black holes generated during the collapse at horizon re-entry of large fluctuations produced during inflation, such as those ascribed to a period of ultra-slow-roll. We show that it interpola
For an arbitrary strong, spherically symmetric super-horizon curvature perturbation, we present analytical solutions of the Einstein equations in terms of asymptotic expansion over the ratio of the Hubble radius to the length-scale of the curvature p
If the primordial curvature perturbation followed a Gaussian distribution, primordial black holes (PBHs) will be Poisson distributed with no additional clustering. We consider local non-Gaussianity and its impact on the initial PBH clustering and mas
The merger rate of primordial black holes depends on their initial clustering. In the absence of primordial non-Gaussianity correlating short and large-scales, primordial black holes are distributed `a la Poisson at the time of their formation. Howev