ﻻ يوجد ملخص باللغة العربية
The influence of quadrupolar interactions on the structure of small clusters is investigated by adding a point quadrupole of variable strength to the Lennard-Jones potential. Competition arises between sheet-like arrangements of the particles, favoured by the quadrupoles, and compact structures, favoured by the isotropic Lennard-Jones attraction. Putative global potential energy minima are obtained for clusters of up to 25 particles using the basin-hopping algorithm. A number of structural motifs and growth sequences emerge, including star-like structures, tubes, shells and sheets. The results are discussed in the context of colloidal self-assembly.
Understanding the interplay between ordered structures and substrate curvature is an interesting problem with versatile applications, including functionalization of charged supramolecular surfaces and modern microfluidic technologies. In this work, w
Neutron diffraction measurements have been performed on the cubic compound PrPb3 in a [001] magnetic field to examine the quadrupolar ordering. Antiferromagnetic components with q=(1/2+-d 1/2 0), (1/2 1/2+-d 0) (d~1/8) are observed below the transiti
The interfacial free energy is a central quantity in crystallization from the meta-stable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from th
The role of porous structure and glass density in response to compressive deformation of amorphous materials is investigated via molecular dynamics simulations. The disordered, porous structures were prepared by quenching a high-temperature binary mi
The evolution of porous structure, potential energy and local density in binary glasses under oscillatory shear deformation is investigated using molecular dynamics simulations. The porous glasses were initially prepared via a rapid thermal quench fr