ﻻ يوجد ملخص باللغة العربية
We report here the detection of a weak magnetic field of 50 - 100 G on the O9.7 supergiant zeta Ori A, using spectropolarimetric observations obtained with NARVAL at the 2m Telescope Bernard Lyot atop Pic du Midi (France). zeta Ori A is the third O star known to host a magnetic field (along with theta^1 Ori C and HD 191612), and the first detection on a normal rapidly-rotating O star. The magnetic field of zeta Ori A is the weakest magnetic field ever detected on a massive star. The measured field is lower than the thermal equipartition limit (about 100 G). By fitting NLTE model atmospheres to our spectra, we determined that zeta Ori A is a 40 Msun star with a radius of 25 Rsun and an age of about 5 - 6 Myr, showing no surface nitrogen enhancement and losing mass at a rate of about 2x10^(-6) Msol/yr. The magnetic topology of zeta Ori A is apparently more complex than a dipole and involves two main magnetic polarities located on both sides of the same hemisphere; our data also suggest that zeta Ori A rotates in about 7.0 d and is about 40 degrees away from pole-on to an Earth-based observer. Despite its weakness, the detected magnetic field significantly affects the wind structure; the corresponding Alfven radius is however very close to the surface, thus generating a different rotational modulation in wind lines than that reported on the two other known magnetic O stars. The rapid rotation of zeta Ori A with respect to theta^1 Ori C appears as a surprise, both stars having similar unsigned magnetic fluxes (once rescaled to the same radius); it may suggest that the sub-equipartition field detected on zeta Ori A is not a fossil remnant (as opposed to that of theta^1 Ori C and HD 191612), but the result of an exotic dynamo action produced through MHD instabilities.
A close companion of Zeta Orionis A was found in 2000 with the Navy Precision Optical Interferometer (NPOI), and shown to be a physical companion. Because the primary is a supergiant of type O, for which dynamical mass measurements are very rare, the
Massive stars play a significant role in the chemical and dynamical evolution of galaxies. However, much of their variability, particularly during their evolved supergiant stage, is poorly understood. To understand the variability of evolved massive
Context: HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray d
Using a weak limit for the hopping integral in one direction in the Hofstadter model, we show that the fermion states in the gaps of the spectrum are determined within the Kitaev chain. The proposed approach allows us to study the behavior of Chern i
We combine UV spectra obtained with the HST/GHRS echelle, IMAPS, and Copernicus to study the abundances and physical conditions in the predominantly ionized gas seen at high (-105 to -65 km/s) and intermediate velocities (-60 to -10 km/s) toward zeta