ﻻ يوجد ملخص باللغة العربية
Using a weak limit for the hopping integral in one direction in the Hofstadter model, we show that the fermion states in the gaps of the spectrum are determined within the Kitaev chain. The proposed approach allows us to study the behavior of Chern insulators (CI) in different classes of symmetry. We consider the Hofstadter model on the square and honeycomb lattices in the case of rational and irrational magnetic fluxes $phi$, and discuss the behavior of the Hall conductance at a weak magnetic field in a sample of finite size. We show that in the semiclassical limit at the center of the fermion spectrum, the Bloch states of fermions turn into chiral Majorana fermion liquid when the magnetic scale $ frac{1}{ phi} $ is equal to the sample size N. We are talking about the dielectric-metal phase transition, which is determined by the behavior of the Landau levels in 2D fermion systems in a transverse magnetic field. When a magnetic scale, which determines the wave function of fermions, exceeds the size of the sample, a jump in the longitudinal conductance occurs. The wave function describes non-localized states of fermions, the sample becomes a conductor, the system changes from the dielectric state to the metallic one. It is shown, that at $1/phi>$N the quantum Hall effect and the Landau levels are not realized, which makes possibility to study the behavior of CI in irrational magnetic fluxes.
We report the observation of the fractional quantum Hall effect in the lowest Landau level of a two-dimensional electron system (2DES), residing in the diluted magnetic semiconductor Cd(1-x)Mn(x)Te. The presence of magnetic impurities results in a gi
Using THz spectroscopy in external magnetic fields we investigate the low-temperature charge dynamics of strained HgTe, a three dimensional topological insulator. From the Faraday rotation angle and ellipticity a complete characterization of the char
The presence of a quantum critical point (QCP) can significantly affect the thermodynamic properties of a material at finite temperatures T. This is reflected, e.g., in the entropy landscape S(T, r) in the vicinity of a QCP, yielding particularly str
Novel controlled non-perturbative techniques are a must in the study of strongly correlated systems, especially near quantum criticality. One of these techniques, bosonization, has been extensively used to understand one-dimensional, as well as highe
Magnetic semiconductors are attracting high interest because of their potential use for spintronics, a new technology which merges electronics and manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently emerged as the most popul