ترغب بنشر مسار تعليمي؟ اضغط هنا

On Picture (2+1)-TQFTs

164   0   0.0 ( 0 )
 نشر من قبل Zhenghan Wang
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of the paper is an exposition of the simplest $(2+1)$-TQFTs in a sense following a pictorial approach. In the end, we fell short on details in the later sections where new results are stated and proofs are outlined. Comments are welcome and should be sent to the 4th author.



قيم البحث

اقرأ أيضاً

63 - Yang Qiu , Zhenghan Wang 2020
Motion groups of links in the three sphere $mathbb{S}^3$ are generalizations of the braid groups, which are motion groups of points in the disk $mathbb{D}^2$. Representations of motion groups can be used to model statistics of extended objects such a s closed strings in physics. Each $1$-extended $(3+1)$-topological quantum field theory (TQFT) will provide representations of motion groups, but it is difficult to compute such representations explicitly in general. In this paper, we compute representations of the motion groups of links in $mathbb{S}^3$ with generalized axes from Dijkgraaf-Witten (DW) TQFTs inspired by dimension reduction. A succinct way to state our result is as a step toward a twisted generalization (Conjecture ref{mainconjecture}) of a conjecture for DW theories of dimension reduction from $(3+1)$ to $(2+1)$: $textrm{DW}^{3+1}_G cong oplus_{[g]in [G]} textrm{DW}^{2+1}_{C(g)}$, where the sum runs over all conjugacy classes $[g]in [G]$ of $G$ and $C(g)$ the centralizer of any element $gin [g]$. We prove a version of Conjecture ref{mainconjecture} for the mapping class groups of closed manifolds and the case of torus links labeled by pure fluxes.
We generalize Ngs two-variable algebraic/combinatorial $0$-th framed knot contact homology for framed oriented knots in $S^3$ to knots in $S^1 times S^2$, and prove that the resulting knot invariant is the same as the framed cord algebra of knots. Ac tually, our cord algebra has an extra variable, which potentially corresponds to the third variable in Ngs three-variable knot contact homology. Our main tool is Lins generalization of the Markov theorem for braids in $S^3$ to braids in $S^1 times S^2$. We conjecture that our framed cord algebras are always finitely generated for non-local knots.
A generalised orbifold of a defect TQFT $mathcal{Z}$ is another TQFT $mathcal{Z}_{mathcal{A}}$ obtained by performing a state sum construction internal to $mathcal{Z}$. As an input it needs a so-called orbifold datum $mathcal{A}$ which is used to lab el stratifications coming from duals of triangulations and is subject to conditions encoding the invariance under Pachner moves. In this paper we extend the construction of generalised orbifolds of $3$-dimensional TQFTs to include line defects. The result is a TQFT acting on 3-bordisms with embedded ribbon graphs labelled by a ribbon category $mathcal{W}_{mathcal{A}}$ that we canonically associate to $mathcal{Z}$ and $mathcal{A}$. We also show that for special orbifold data, the internal state sum construction can be performed on more general skeletons than those dual to triangulations. This makes computations with $mathcal{Z}_{mathcal{A}}$ easier to handle in specific examples.
We introduce the notion of $n$-dimensional topological quantum field theory (TQFT) with defects as a symmetric monoidal functor on decorated stratified bordisms of dimension $n$. The familiar closed or open-closed TQFTs are special cases of defect TQ FTs, and for $n=2$ and $n=3$ our general definition recovers what had previously been studied in the literature. Our main construction is that of generalised orbifolds for any $n$-dimensional defect TQFT: Given a defect TQFT $mathcal{Z}$, one obtains a new TQFT $mathcal{Z}_{mathcal{A}}$ by decorating the Poincare duals of triangulated bordisms with certain algebraic data $mathcal{A}$ and then evaluating with $mathcal{Z}$. The orbifold datum $mathcal{A}$ is constrained by demanding invariance under $n$-dimensional Pachner moves. This procedure generalises both state sum models and gauging of finite symmetry groups, for any $n$. After developing the general theory, we focus on the case $n=3$.
We prove the $r$-spin cobordism hypothesis in the setting of (weak) 2-categories for every positive integer $r$: The 2-groupoid of 2-dimensional fully extended $r$-spin TQFTs with given target is equivalent to the homotopy fixed points of an induced $textrm{Spin}_2^r$-action. In particular, such TQFTs are classified by fully dualisable objects together with a trivialisation of the $r$-th power of their Serre automorphisms. For $r=1$ we recover the oriented case (on which our proof builds), while ordinary spin structures correspond to $r=2$. To construct examples, we explicitly describe $textrm{Spin}_2^r$-homotopy fixed points in the equivariant completion of any symmetric monoidal 2-category. We also show that every object in a 2-category of Landau--Ginzburg models gives rise to fully extended spin TQFTs, and that half of these do not factor through the oriented bordism 2-category.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا