ترغب بنشر مسار تعليمي؟ اضغط هنا

Gyrokinetic turbulence: a nonlinear route to dissipation through phase space

167   0   0.0 ( 0 )
 نشر من قبل Alexander Schekochihin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes a conceptual framework for understanding kinetic plasma turbulence as a generalized form of energy cascade in phase space. It is emphasized that conversion of turbulent energy into thermodynamic heat is only achievable in the presence of some (however small) degree of collisionality. The smallness of the collision rate is compensated by the emergence of small-scale structure in the velocity space. For gyrokinetic turbulence, a nonlinear perpendicular phase mixing mechanism is identified and described as a turbulent cascade of entropy fluctuations simultaneously occurring at spatial scales smaller than the ion gyroscale and in velocity space. Scaling relations for the resulting fluctuation spectra are derived. An estimate for the collisional cutoff is provided. The importance of adequately modeling and resolving collisions in gyrokinetic simulations is biefly discussed, as well as the relevance of these results to understanding the dissipation-range turbulence in the solar wind and the electrostatic microturbulence in fusion plasmas.



قيم البحث

اقرأ أيضاً

Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear deco rrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.
Direct coupling between a transport solver and local, nonlinear gyrokinetic calculations using the multiscale gyrokinetic code TRINITY [M. Barnes, Ph.D. thesis, arxiv:0901.2868] is described. The coupling of the microscopic and macroscopic physics is done within the framework of multiscale gyrokinetic theory, of which we present the assumptions and key results. An assumption of scale separation in space and time allows for the simulation of turbulence in small regions of the space-time grid, which are embedded in a coarse grid on which the transport equations are implicitly evolved. This leads to a reduction in computational expense of several orders of magnitude, making first-principles simulations of the full fusion device volume over the confinement time feasible on current computing resources. Numerical results from TRINITY simulations are presented and compared with experimental data from JET and ASDEX Upgrade plasmas.
The Large Eddy Simulation (LES) approach - solving numerically the large scales of a turbulent system and accounting for the small-scale influence through a model - is applied to nonlinear gyrokinetic systems that are driven by a number of different microinstabilities. Comparisons between modeled, lower resolution, and higher resolution simulations are performed for an experimental measurable quantity, the electron density fluctuation spectrum. Moreover, the validation and applicability of LES is demonstrated through a series of diagnostics based on the free energetics of the system.
108 - R. Jorge , B. J. Frei , P. Ricci 2019
A gyrokinetic Coulomb collision operator is derived, which is particularly useful to describe the plasma dynamics at the periphery region of magnetic confinement fusion devices. The derived operator is able to describe collisions occurring in distrib ution functions arbitrarily far from equilibrium with variations on spatial scales at and below the particle Larmor radius. A multipole expansion of the Rosenbluth potentials is used in order to derive the dependence of the full Coulomb collision operator on the particle gyroangle. The full Coulomb collision operator is then expressed in gyrocentre phase-space coordinates, and a closed formula for its gyroaverage in terms of the moments of the gyrocenter distribution function in a form ready to be numerically implemented is provided. Furthermore, the collision operator is projected onto a Hermite-Laguerre velocity space polynomial basis and expansions in the small electron-to-ion mass ratio are provided.
Boundary plasma physics plays an important role in tokamak confinement, but is difficult to simulate in a gyrokinetic code due to the scale-inseparable nonlocal multi-physics in magnetic separatrix and open magnetic field geometry. Neutral particles are also an important part of the boundary plasma physics. In the present paper, noble electrostatic gyrokinetic techniques to simulate the flux-driven, low-beta electrostatic boundary plasma is reported. Gyrokinetic ions and drift-kinetic electrons are utilized without scale-separation between the neoclassical and turbulence dynamics. It is found that the nonlinear intermittent turbulence is a natural gyrokinetic phenomenon in the boundary plasma in the vicinity of the magnetic separatrix surface and in the scrape-off layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا