ﻻ يوجد ملخص باللغة العربية
The Large Eddy Simulation (LES) approach - solving numerically the large scales of a turbulent system and accounting for the small-scale influence through a model - is applied to nonlinear gyrokinetic systems that are driven by a number of different microinstabilities. Comparisons between modeled, lower resolution, and higher resolution simulations are performed for an experimental measurable quantity, the electron density fluctuation spectrum. Moreover, the validation and applicability of LES is demonstrated through a series of diagnostics based on the free energetics of the system.
The properties of the boundary plasma in a tokamak are now recognized to play a key role in determining the achievable fusion power and the lifetimes of plasma-facing components. Accurate quantitative modeling and improved qualitative understanding o
Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region
3D2V continuum gyrokinetic simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using the full-$f$ discontinuous-Galerkin code Gkeyll. These simulations include the basic elements of a fusion-devi
Curvature-driven turbulence in a helical open-field-line plasma is investigated using electrostatic five-dimensional gyrokinetic continuum simulations in an all-bad-curvature helical-slab geometry. Parameters for a National Spherical Torus Experiment
Boundary plasma physics plays an important role in tokamak confinement, but is difficult to simulate in a gyrokinetic code due to the scale-inseparable nonlocal multi-physics in magnetic separatrix and open magnetic field geometry. Neutral particles