ﻻ يوجد ملخص باللغة العربية
In this paper we present an algorithmic framework for solving a class of combinatorial optimization problems on graphs with bounded pathwidth. The problems are NP-hard in general, but solvable in linear time on this type of graphs. The problems are relevant for assessing network reliability and improving the networks performance and fault tolerance. The main technique considered in this paper is dynamic programming.
We give polynomial-time approximation schemes for monotone maximization problems expressible in terms of distances (up to a fixed upper bound) and efficiently solvable in graphs of bounded treewidth. These schemes apply in all fractionally treewidth-
We give a constant factor approximation algorithm for the asymmetric traveling salesman problem when the support graph of the solution of the Held-Karp linear programming relaxation has bounded orientable genus.
Large graphs abound in machine learning, data mining, and several related areas. A useful step towards analyzing such graphs is that of obtaining certain summary statistics - e.g., or the expected length of a shortest path between two nodes, or the e
We investigate the performance of a variant of Axelrods model for dissemination of culture - the Adaptive Culture Heuristic (ACH) - on solving an NP-Complete optimization problem, namely, the classification of binary input patterns of size $F$ by a B
It has long been known that Feedback Vertex Set can be solved in time $2^{mathcal{O}(wlog w)}n^{mathcal{O}(1)}$ on $n$-vertex graphs of treewidth $w$, but it was only recently that this running time was improved to $2^{mathcal{O}(w)}n^{mathcal{O}(1)}