ﻻ يوجد ملخص باللغة العربية
We consider a tunnel junction formed between a fixed electrode and an oscillating one. Accumulation of the charge on the junction capacitor induces a force on the nano-mechanical oscillator. The junction is voltage biased and connected in series with an impedance $Z(omega)$. We discuss how the picture of Coulomb blockade is modified by the presence of the oscillator. Quantum fluctuations of the mechanical oscillator modify the $I$-$V$ characteristics particularly in the strong Coulomb blockade limit. We show that the oscillator can be taken into account by a simple modification of the effective impedance of the circuit. We discuss in some details the case of a single inductance $Z(omega)=iLomega$ and of a constant resistance $Z(omega)=R$. With little modifications the theory applies also to incoherent transport in Josephson junctions in the tunneling limit.
We have numerically studied the behavior of one dimensional tunnel junction arrays when random background charges are included using the ``orthodox theory of single electron tunneling. Random background charge distributions are verified in both ampli
We investigate a wafer scale tunnel junction fabrication method, where a plasma etched via through a dielectric layer covering bottom Al electrode defines the tunnel junction area. The ex-situ tunnel barrier is formed by oxidation of the bottom elect
Quantum transport through single molecules is very sensitive to the strength of the molecule-electrode contact. When a molecular junction weakly coupled to external electrodes, charging effects do play an important role (Coulomb blockade regime). In
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully-transmitting mode, a system previously thought to be well described without invoking Coulomb interactions. At temperatures
A tunable directional coupler based on Coulomb Blockade effect is presented. Two electron waveguides are coupled by a quantum dot to an injector waveguide. Electron confinement is obtained by surface Schottky gates on single GaAs/AlGaAs heterojunctio