ترغب بنشر مسار تعليمي؟ اضغط هنا

Sincere-Strategy Preference-Based Approval Voting Fully Resists Constructive Control and Broadly Resists Destructive Control

255   0   0.0 ( 0 )
 نشر من قبل Joerg Rothe
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study sincere-strategy preference-based approval voting (SP-AV), a system proposed by Brams and Sanver [Electoral Studies, 25(2):287-305, 2006], and here adjusted so as to coerce admissibility of the votes (rather than excluding inadmissible votes a priori), with respect to procedural control. In such control scenarios, an external agent seeks to change the outcome of an election via actions such as adding/deleting/partitioning either candidates or voters. SP-AV combines the voters preference rankings with their approvals of candidates, where in elections with at least two candidates the voters approval strategies are adjusted--if needed--to approve of their most-preferred candidate and to disapprove of their least-preferred candidate. This rule coerces admissibility of the votes even in the presence of control actions, and hybridizes, in effect, approval with pluralitiy voting. We prove that this system is computationally resistant (i.e., the corresponding control problems are NP-hard) to 19 out of 22 types of constructive and destructive control. Thus, SP-AV has more resistances to control than is currently known for any other natural voting system with a polynomial-time winner problem. In particular, SP-AV is (after Copeland voting, see Faliszewski et al. [AAIM-2008, Springer LNCS 5034, pp. 165-176, 2008]) the second natural voting system with an easy winner-determination procedure that is known to have full resistance to constructive control, and unlike Copeland voting it in addition displays broad resistance to destructive control.



قيم البحث

اقرأ أيضاً

234 - Joerg Rothe , Lena Schend 2012
Walsh [Wal10, Wal09], Davies et al. [DKNW10, DKNW11], and Narodytska et al. [NWX11] studied various voting systems empirically and showed that they can often be manipulated effectively, despite their manipulation problems being NP-hard. Such an exper imental approach is sorely missing for NP-hard control problems, where control refers to attempts to tamper with the outcome of elections by adding/deleting/partitioning either voters or candidates. We experimentally tackle NP-hard control problems for Bucklin and fallback voting. Among natural voting systems with efficient winner determination, fallback voting is currently known to display the broadest resistance to control in terms of NP-hardness, and Bucklin voting has been shown to behave almost as well in terms of control resistance [ER10, EPR11, EFPR11]. We also investigate control resistance experimentally for plurality voting, one of the first voting systems analyzed with respect to electoral control [BTT92, HHR07]. Our findings indicate that NP-hard control problems can often be solved effectively in practice. Moreover, our experiments allow a more fine-grained analysis and comparison-across various control scenarios, vote distribution models, and voting systems-than merely stating NP-hardness for all these control problems.
Control studies attempts to set the outcome of elections through the addition, deletion, or partition of voters or candidates. The set of benchmark control types was largely set in the seminal 1992 paper by Bartholdi, Tovey, and Trick that introduced control, and there now is a large literature studying how many of the benchmark types various election systems are vulnerable to, i.e., have polynomial-time attack algorithms for. However, although the longstanding benchmark models of addition and deletion model relatively well the real-world settings that inspire them, the longstanding benchmark models of partition model settings that are arguably quite distant from those they seek to capture. In this paper, we introduce--and for some important cases analyze the complexity of--new partition models that seek to better capture many real-world partition settings. In particular, in many partition settings one wants the two parts of the partition to be of (almost) equal size, or is partitioning into more than two parts, or has groups of actors who must be placed in the same part of the partition. Our hope is that having these new partition types will allow studies of control attacks to include such models that more realistically capture many settings.
Justified representation (JR) is a standard notion of representation in multiwinner approval voting. Not only does a JR committee always exist, but previous work has also shown through experiments that the JR condition can typically be fulfilled by g roups of fewer than $k$ candidates. In this paper, we study such groups -- known as $n/k$-justifying groups -- both theoretically and empirically. First, we show that under the impartial culture model, $n/k$-justifying groups of size less than $k/2$ are likely to exist, which implies that the number of JR committees is usually large. We then present efficient approximation algorithms that compute a small $n/k$-justifying group for any given instance, and a polynomial-time exact algorithm when the instance admits a tree representation. In addition, we demonstrate that small $n/k$-justifying groups can often be useful for obtaining a gender-balanced JR committee even though the problem is NP-hard.
Previous work on voter control, which refers to situations where a chair seeks to change the outcome of an election by deleting, adding, or partitioning voters, takes for granted that the chair knows all the voters preferences and that all votes are cast simultaneously. However, elections are often held sequentially and the chair thus knows only the previously cast votes and not the future ones, yet needs to decide instantaneously which control action to take. We introduce a framework that models online voter control in sequential elections. We show that the related problems can be much harder than in the standard (non-online) case: For certain election systems, even with efficient winner problems, online control by deleting, adding, or partitioning voters is PSPACE-complete, even if there are only two candidates. In addition, we obtain (by a new characterization of coNP in terms of weight-bounded alternating Turing machines) completeness for coNP in the deleting/adding cases with a bounded deletion/addition limit, and we obtain completeness for NP in the partition cases with an additional restriction. We also show that for plurality, online control by deleting or adding voters is in P, and for partitioning voters is coNP-hard.
168 - Beno^it Kloeckner 2020
We consider synchronized iterative voting in the Approval Voting system. We give examples with a Condorcet winner where voters apply simple, sincere, consistent strategies but where cycles appear that can prevent the election of the Condorcet winner, or that can even lead to the election of a consensual loser, rejected in all circumstances by a majority of voters. We conduct numerical experiments to determine how rare such cycles are. It turns out that when voters apply Lasliers Leader Rule they are quite uncommon, and we prove that they cannot happen when voters preferences are modeled by a one-dimensional culture. However a slight variation of the Leader Rule accounting for possible draws in voters preferences witnesses much more bad cycle, especially in a one-dimensional culture.Then we introduce a continuous-space model in which we show that these cycles are stable under perturbation. Last, we consider models of voters behavior featuring a competition between strategic behavior and reluctance to vote for candidates that are ranked low in their preferences. We show that in some cases, this leads to chaotic behavior, with fractal attractors and positive entropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا