ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy-heavy-light quark potential in two approaches

141   0   0.0 ( 0 )
 نشر من قبل Arata Yamamoto
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform the first study about the heavy-heavy-light quark potential in lattice QCD and a potential model. We find that the inter-two-quark confining force is reduced by valence quark motional effects compared to the string tension.



قيم البحث

اقرأ أيضاً

We study the heavy-heavy-light quark ($QQq$) potential in SU(3) quenched lattice QCD, and discuss one of the roles of the finite-mass valence quark in the inter-quark potential. Monte Carlo simulations are performed with the standard gauge action on the $16^4$ lattice at $beta =6.0$ and the $O(a)$-improved Wilson fermion action at four hopping parameters. For statistical improvement, the gauge configuration is fixed with the Coulomb gauge. We calculate the potential energy of $QQq$ systems as a function of the inter-heavy-quark distance $R$ in the range of $R le$ 0.8 fm. The $QQq$ potential is well described with a Coulomb plus linear potential, and the effective string tension between the two heavy quarks is significantly smaller than the string tension $sigma simeq 0.89$ GeV/fm. It would generally hold that the effect of the finite-mass valence quark reduces the inter-two-quark confinement force in baryons.
86 - G. Burdman 1992
The scaling behavior of semileptonic form-factors in Heavy to Light transitions is studied in the Heavy Quark Effective Theory. In the case of $Hrightarrow pi e u$ it is shown that the same scaling violations affecting the heavy meson decay constant will be present in the semileptonic form-factors.
We determine the hard-loop resummed propagator in an anisotropic QCD plasma in general covariant gauges and define a potential between heavy quarks from the Fourier transform of its static limit. We find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment.
Following the procedure and motivations developed by Richardson, Buchmuller and Tye, we derive the potential of static quarks consistent with both the three-loop running of QCD coupling constant under the two-loop perturbative matching of V and MS-ba r schemes and the confinement regime at long distances. Implications for the heavy quark masses as well as the quarkonium spectra and leptonic widths are discussed.
We investigate chemical-potential ($mu$) dependence of the static-quark free energies in both the real and imaginary $mu$ regions, using the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action. Static-quark potentials are evaluated from Polyakov-loop correlators in the deconfinement phase and the imaginary $mu=imu_{rm I}$ region and extrapolated to the real $mu$ region with analytic continuation. As the analytic continuation, the potential calculated at imaginary $mu=imu_{rm I}$ is expanded into a Taylor-expansion series of $imu_{rm I}/T$ up to 4th order and the pure imaginary variable $imu_{rm I}/T$ is replaced by the real one $mu_{rm R}/T$. At real $mu$, the 4th-order term weakens $mu$ dependence of the potential sizably. Also, the color-Debye screening mass is extracted from the color-singlet potential at imaginary $mu$, and the mass is extrapolated to real $mu$ by analytic continuation. The screening mass thus obtained has stronger $mu$ dependence than the prediction of the leading-order thermal perturbation theory at both real and imaginary $mu$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا