ﻻ يوجد ملخص باللغة العربية
We derive the linearly perturbed matching conditions between a Schwarzschild spacetime region with stationary and axially symmetric perturbations and a FLRW spacetime with arbitrary perturbations. The matching hypersurface is also perturbed arbitrarily and, in all cases, the perturbations are decomposed into scalars using the Hodge operator on the sphere. This allows us to write down the matching conditions in a compact way. In particular, we find that the existence of a perturbed (rotating, stationary and vacuum) Schwarzschild cavity in a perturbed FLRW universe forces the cosmological perturbations to satisfy constraints that link rotational and gravitational wave perturbations. We also prove that if the perturbation on the FLRW side vanishes identically, then the vacuole must be perturbatively static and hence Schwarzschild. By the dual nature of the problem, the first result translates into links between rotational and gravitational wave perturbations on a perturbed Oppenheimer-Snyder model, where the perturbed FLRW dust collapses in a perturbed Schwarzschild environment which rotates in equilibrium. The second result implies in particular that no region described by FLRW can be a source of the Kerr metric.
We investigate the existence of analytic solutions for the field equations in the Einstein-ae ther theory for a static spherically symmetric spacetime and provide a detailed dynamical system analysis of the field equations. In particular, we investig
In this paper we study the Kepler problem in the non commutative Snyder scenario. We characterize the deformations in the Poisson bracket algebra under a mimic procedure from quantum standard formulations and taking into account a general recipe to b
We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantage
We examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the non-relativistic anti-Snyder model which is relevant to deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free par
It has been revealed that the first order symmetry operator for the linearized Einstein equation on a vacuum spacetime can be constructed from a Killing-Yano 3-form. This might be used to construct all or part of solutions to the field equation. In t