ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Order Symmetry Operator on Gravitational Perturbations in the 5-dimensional Myers-Perry Spacetime with Equal Angular Momenta

64   0   0.0 ( 0 )
 نشر من قبل Masataka Tsuchiya
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been revealed that the first order symmetry operator for the linearized Einstein equation on a vacuum spacetime can be constructed from a Killing-Yano 3-form. This might be used to construct all or part of solutions to the field equation. In this paper, we perform a mode decomposition of a metric perturbation on the Schwarzschild spacetime and the Myers-Perry spacetime with equal angular momenta in 5 dimensions, and investigate the action of the symmetry operator on specific modes concretely. We show that on such spacetimes, there is no transition between the modes of a metric perturbation by the action of the symmetry operator, and it ends up being the linear combination of the infinitesimal transformations of isometry.



قيم البحث

اقرأ أيضاً

We calculate the effects of the electromagnetic self-force on a charged particle outside a five dimensional Myers-Perry space-time. Based on our earlier work [1], we obtain the self-force using quaternions in Janis-Newman and Giampieri algorithms. In four dimensional rotating space-time the electromagnetic self-force is repulsive at any point, however, in five dimensional rotational space-time, we find a point r0 where the electromagnetic self-force vanishes. For r < r0 (r > r0) the electromagnetic self-force is attractive (repulsive).
58 - Marcello Ortaggio 2016
We study the class of vacuum (Ricci flat) six-dimensional spacetimes admitting a non-degenerate multiple Weyl aligned null direction l, thus being of Weyl type II or more special. Subject to an additional assumption on the asymptotic fall-off of the Weyl tensor, we prove that these spacetimes can be completely classified in terms of the two eigenvalues of the (asymptotic) twist matrix of l and of a discrete parameter $U^0=pm 1/2, 0$. All solutions turn out to be Kerr-Schild spacetimes of type D and reduce to a family of generalized Myers-Perry metrics (which include limits and analytic continuations of the original Myers-Perry black hole metric, such as certain NUT spacetimes). A special subcase corresponds to twisting solutions with zero shear. In passing, limits connecting various branches of solutions are briefly discussed.
The Newman-Janis and Giampieri algorithms are two simple methods to generate stationary rotating black hole solutions in four dimensions. In this paper, we obtain the Mayers-Perry black hole from the Schwartzchild solution in five dimensions using qu aternions. Our method generates the Mayers-Perry black hole solution with two angular momenta in one fell swoop.
The Newman-Janis (NJ) method is a prescription to derive the Kerr space-time from the Schwarzschild metric. The BTZ, Kerr and five-dimensional Myers-Perry (MP) black hole solutions have already been generated by differe
We investigate the geodesic motions of a massive particle and light ray in the hyperplane orthogonal to the symmetry axis in the 5-dimensional hypercylindrical spacetime. The class of the solutions depends on one constant a which is the ratio of stri ng mass density and tension. There exist unstable orbits in null geodesic only in some range of a. The innermost stable circular orbits in timelike geodesic also exist only in a certain range of the parameter a. The capture cross section and the deflection angle of light ray are also computed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا