ﻻ يوجد ملخص باللغة العربية
The Ca-sensitive regulatory switch of cardiac muscle is a paradigmatic example of protein assemblies that communicate ligand binding through allosteric change. The switch is a dimeric complex of troponin C (TnC), an allosteric sensor for Ca, and troponin I (TnI), an allosteric reporter. Time-resolved equilibrium FRET measurements suggest that the switch activates in two steps: a TnI-independent Ca-priming step followed by TnI-dependent opening. To resolve the mechanistic role of TnI in activation we performed stopped-flow FRET measurements of activation following rapid addition of a lacking component (Ca or TnI) and deactivation following rapid chelation of Ca. The time-resolved measurements, stopped-flow measurements, and Ca-titration measurements were globally analyzed in terms of a new quantitative dynamic model of TnC-TnI allostery. The analysis provided a mesoscopic parameterization of distance changes, free energy changes, and transition rates among the accessible coarse-grained states of the system. The results reveal (i) the Ca-induced priming step, which precedes opening, is the rate limiting step in activation, (ii) closing is the rate limiting step in deactivation, (iii) TnI induces opening, (iv) an incompletely deactivated population when regulatory Ca is not bound, which generates an accessory pathway of activation, and (v) incomplete activation by Ca--when regulatory Ca is bound, a 3:2 mixture of dynamically inter-converting open (active) and primed-closed (partially active) conformers is observed (15 C). Temperature-dependent stopped-flow FRET experiments provide a near complete thermo-kinetic parametrization of opening. <Abstract Truncated>
The Na$^+$/K$^+$ ATPase is an essential component of cardiac electrophysiology, maintaining physiological Na$^+$ and K$^+$ concentrations over successive heart beats. Terkildsen et al. (2007) developed a model of the ventricular myocyte Na$^+$/K$^+$
Equilibrium sampling of biomolecules remains an unmet challenge after more than 30 years of atomistic simulation. Efforts to enhance sampling capability, which are reviewed here, range from the development of new algorithms to parallelization to nove
SARS-CoV-2 is what has caused the COVID-19 pandemic. Early viral infection is mediated by the SARS-CoV-2 homo-trimeric Spike (S) protein with its receptor binding domains (RBDs) in the receptor-accessible state. We performed molecular dynamics simula
We study a protein-DNA target search model with explicit DNA dynamics applicable to in vitro experiments. We show that the DNA dynamics plays a crucial role for the effectiveness of protein jumps between sites distant along the DNA contour but close
Test experiments of hybridization in DNA microarrays show systematic deviations from the equilibrium isotherms. We argue that these deviations are due to the presence of a partially hybridized long-lived state, which we include in a kinetic model. Ex