ترغب بنشر مسار تعليمي؟ اضغط هنا

Composition-Diamond lemma for differential algebras

240   0   0.0 ( 0 )
 نشر من قبل Yuqun Chen
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we establish the Composition-Diamond lemma for free differential algebras. As applications, we give Groebner-Shirshov bases for free Lie-differential algebra and free commutative-differential algebra, respectively.



قيم البحث

اقرأ أيضاً

In this paper, we establish Composition-Diamond lemma for tensor product $k< X> otimes k< Y>$ of two free algebras over a field. As an application, we construct a Groebner-Shirshov basis in $k< X> otimes k< Y>$ by lifting a Groebner-Shirshov basis in $k[X] otimes k< Y>$, where $k[X]$ is a commutative algebra.
In this paper we give some relationships among the Groebner-Shirshov bases in free associative algebras, free left modules and double-free left modules (free modules over a free algebra). We give the Chibrikovs Composition-Diamond lemma for modules a nd show that Kang-Lees Composition-Diamond lemma follows from this lemma. As applications, we also deal with highest weight module over the Lie algebra $sl_2$, Verma module over a Kac-Moody algebra, Verma module over Lie algebra of coefficients of a free conformal algebra and the universal enveloping module for a Sabinin algebra.
135 - Viktor Lopatkin 2021
This paper shows how to obtain the key concepts and notations of Garside theory by using the Composition--Diamond lemma. We also show that in some cases the greedy normal form is exactly a Grobner--Shirshov normal form and a family of a left-cancella tive category is a Garside family, if and only if a suitable set of reductions is confluent up to some congruence on words.
In this paper we construct a minimal faithful representation of the $(2m+2)$-dimensional complex general Diamond Lie algebra, $mathfrak{D}_m(mathbb{C})$, which is isomorphic to a subalgebra of the special linear Lie algebra $mathfrak{sl}(m+2,mathbb{C })$. We also construct a faithful representation of the general Diamond Lie algebra $mathfrak{D}_m$ which is isomorphic to a subalgebra of the special symplectic Lie algebra $mathfrak{sp}(2m+2,mathbb{R})$. Furthermore, we describe Leibniz algebras with corresponding $(2m+2)$-dimensional general Diamond Lie algebra $mathfrak{D}_m$ and ideal generated by the squares of elements giving rise to a faithful representation of $mathfrak{D}_m$.
200 - J.-W. He , Q.-S. Wu 2008
The concept of Koszul differential graded algebra (Koszul DG algebra) is introduced. Koszul DG algebras exist extensively, and have nice properties similar to the classic Koszul algebras. A DG version of the Koszul duality is proved. When the Koszul DG algebra $A$ is AS-regular, the Ext-algebra $E$ of $A$ is Frobenius. In this case, similar to the classical BGG correspondence, there is an equivalence between the stable category of finitely generated left $E$-modules, and the quotient triangulated category of the full triangulated subcategory of the derived category of right DG $A$-modules consisting of all compact DG modules modulo the full triangulated subcategory consisting of all the right DG modules with finite dimensional cohomology. The classical BGG correspondence can derived from the DG version.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا