ﻻ يوجد ملخص باللغة العربية
In this paper we construct a minimal faithful representation of the $(2m+2)$-dimensional complex general Diamond Lie algebra, $mathfrak{D}_m(mathbb{C})$, which is isomorphic to a subalgebra of the special linear Lie algebra $mathfrak{sl}(m+2,mathbb{C})$. We also construct a faithful representation of the general Diamond Lie algebra $mathfrak{D}_m$ which is isomorphic to a subalgebra of the special symplectic Lie algebra $mathfrak{sp}(2m+2,mathbb{R})$. Furthermore, we describe Leibniz algebras with corresponding $(2m+2)$-dimensional general Diamond Lie algebra $mathfrak{D}_m$ and ideal generated by the squares of elements giving rise to a faithful representation of $mathfrak{D}_m$.
We describe infinite-dimensional Leibniz algebras whose associated Lie algebra is the Witt algebra and we prove the triviality of low-dimensional Leibniz cohomology groups of the Witt algebra with the coefficients in itself.
In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra $n_{n,1}.$ We introduce a Fock module for the algebra $n_{n,1}$ and provide classification of Leibniz algebras $L$ whose corresponding
In this paper we describe some Leibniz algebras whose corresponding Lie algebra is four-dimensional Diamond Lie algebra $mathfrak{D}$ and the ideal generated by the squares of elements (further denoted by $I$) is a right $mathfrak{D}$-module. Using d
In this paper, we introduce the notion Lie-derivation. This concept generalizes derivations for non-Lie Leibniz algebras. We study these Lie-derivations in the case where their image is contained in the Lie-center, call them Lie-central derivations.
In this paper solvable Leibniz algebras whose nilradical is quasi-filiform Lie algebra of maximum length, are classified. The rigidity of such Leibniz algebras with two-dimensional complemented space to nilradical is proved.