ﻻ يوجد ملخص باللغة العربية
The existence of a liquid-gas phase transition for hot nuclear systems at subsaturation densities is a well established prediction of finite temperature nuclear many-body theory. In this paper, we discuss for the first time the properties of such phase transition for homogeneous nuclear matter within the Self-Consistent Greens Functions approach. We find a substantial decrease of the critical temperature with respect to the Brueckner-Hartree-Fock approximation. Even within the same approximation, the use of two different realistic nucleon-nucleon interactions gives rise to large differences in the properties of the critical point.
We present first-principle predictions for the liquid-gas phase transition in symmetric nuclear matter employing both two- and three-nucleon chiral interactions. Our discussion focuses on the sources of systematic errors in microscopic quantum many b
We study an effective relativistic mean-field model of nuclear matter with arbitrary proton fraction at finite temperature in the framework of nonextensive statistical mechanics, characterized by power-law quantum distributions. We investigate the pr
The machine-learning techniques have shown their capability for studying phase transitions in condensed matter physics. Here, we employ the machine-learning techniques to study the nuclear liquid-gas phase transition. We adopt an unsupervised learnin
The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low
Systems of Bose particles with both repulsive and attractive interactions are studied using the Skyrme-like mean-field model. The phase diagram of such systems exhibits two special lines in the chemical potential-temperature plane: one line which rep