ﻻ يوجد ملخص باللغة العربية
In this paper we present proofs of basic results, including those developed so far by H. Bell, for the plane fixed point problem. Some of these results had been announced much earlier by Bell but without accessible proofs. We define the concept of the variation of a map on a simple closed curve and relate it to the index of the map on that curve: Index = Variation + 1. We develop a prime end theory through hyperbolic chords in maximal round balls contained in the complement of a non-separating plane continuum $X$. We define the concept of an {em outchannel} for a fixed point free map which carries the boundary of $X$ minimally into itself and prove that such a map has a emph{unique} outchannel, and that outchannel must have variation $=-1$. We also extend Bells linchpin theorem for a foliation of a simply connected domain, by closed convex subsets, to arbitrary domains in the sphere. We introduce the notion of an oriented map of the plane. We show that the perfect oriented maps of the plane coincide with confluent (that is composition of monotone and open) perfect maps of the plane. We obtain a fixed point theorem for positively oriented, perfect maps of the plane. This generalizes results announced by Bell in 1982 (see also cite{akis99}). It follows that if $X$ is invariant under an oriented map $f$, then $f$ has a point of period at most two in $X$.
If $f:[a,b]to mathbb{R}$, with $a<b$, is continuous and such that $a$ and $b$ are mapped in opposite directions by $f$, then $f$ has a fixed point in $I$. Suppose that $f:mathbb{C}tomathbb{C}$ is map and $X$ is a continuum. We extend the above for ce
An old problem asks whether every compact group has a Haar-nonmeasurable subgroup. A series of earlier results reduce the problem to infinite metrizable profinite groups. We provide a positive answer, assuming a weak, potentially provable, consequenc
The famous Banach-Mazur problem, which asks if every infinite-dimensional Banach space has an infinite-dimensional separable quotient Banach space, has remained unsolved for 85 years, though it has been answered in the affirmative for reflexive Banac
We show that a plane continuum X is indecomposable iff X has a sequence (U_n) of not necessarily distinct complementary domains satisfying what we call the double-pass condition: If one draws an open arc A_n in each U_n whose ends limit into the boun
The result of Boyce and Huneke gives rise to a 1-dimensional continuum, which is the intersection of a descending family of disks, that admits two commuting homeomorphisms without a common fixed point.