ﻻ يوجد ملخص باللغة العربية
If $f:[a,b]to mathbb{R}$, with $a<b$, is continuous and such that $a$ and $b$ are mapped in opposite directions by $f$, then $f$ has a fixed point in $I$. Suppose that $f:mathbb{C}tomathbb{C}$ is map and $X$ is a continuum. We extend the above for certain continuous maps of dendrites $Xto D, Xsubset D$ and for positively oriented maps $f:Xto mathbb{C}, Xsubset mathbb{C}$ with the continuum $X$ not necessarily invariant. Then we show that in certain cases a holomorphic map $f:mathbb{C}tomathbb{C}$ must have a fixed point $a$ in a continuum $X$ so that either $ain mathrm{Int}(X)$ or $f$ exhibits rotation at $a$.
We show that a plane continuum X is indecomposable iff X has a sequence (U_n) of not necessarily distinct complementary domains satisfying what we call the double-pass condition: If one draws an open arc A_n in each U_n whose ends limit into the boun
In this paper we present proofs of basic results, including those developed so far by H. Bell, for the plane fixed point problem. Some of these results had been announced much earlier by Bell but without accessible proofs. We define the concept of th
The result of Boyce and Huneke gives rise to a 1-dimensional continuum, which is the intersection of a descending family of disks, that admits two commuting homeomorphisms without a common fixed point.
The critical point is a fixed point in finite-size scaling. To quantify the behaviour of such a fixed point, we define, at a given temperature and scaling exponent ratio, the width of scaled observables for different sizes. The minimum of the width r
In this paper, we first define the concept of convexity in G-metric spaces. We then use Mann iterative process in this newly defined convex G-metric space to prove some convergence results for some classes of mappings. In this way, we can extend seve