ترغب بنشر مسار تعليمي؟ اضغط هنا

De Haas-van Alphen oscillations in the charge-density wave compound lanthanum tritelluride (LaTe_3)

127   0   0.0 ( 0 )
 نشر من قبل Nancy Ru
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Ru




اسأل ChatGPT حول البحث

De Haas-van Alphen oscillations were measured in lanthanum tritelluride (LaTe_3) to probe the partially gapped Fermi surface resulting from charge density wave (CDW) formation. Three distinct frequencies were observed, one of which can be correlated with a FS sheet that is unaltered by CDW formation. The other two frequencies arise from FS sheets that have been reconstructed in the CDW state.



قيم البحث

اقرأ أيضاً

We report the magneto-transport properties of CaAl$_4$ single crystals with $C2/m$ structure at low temperature. CaAl$_4$ exhibits large unsaturated magnetoresistance $sim$3000$%$ at 2.5 K and 14 T. The nonlinear Hall resistivity is observed, which i ndicates the multi-band feature. The first-principles calculations show the electron-hole compensation and the complex Fermi surface in CaAl$_4$, to which the two-band model with over-simplified carrier mobility cant completely apply. Evident quantum oscillations have been observed with B//c and B//ab configurations, from which the nontrivial Berry phase is extracted by the multi-band Lifshitz-Kosevich formula fitting. An electron-type quasi-2D Fermi surface is found by the angle-dependent Shubnikov-de Haas oscillations, de Haas-van Alphen oscillations and the first-principles calculations. The calculations also elucidate that CaAl$_4$ owns a Dirac nodal line type band structure around the $Gamma$ point in the $Z$-$Gamma$-$L$ plane, which is protected by the mirror symmetry as well as the space inversion and time reversal symmetries. Once the spin-orbit coupling is included, the crossed nodal line opens a negligible gap (less than 3 meV). The open-orbit topology is also found in the electron-type Fermi surfaces, which is believed to help enhance the magnetoresistance observed.
We report on the results of a de Haas-van Alphen (dHvA) measurement performed on the recently discovered antiferromagnet URhIn$_5$ ($T_N$ = 98 K), a 5textit{f}-analogue of the well studied heavy fermion antiferromagnet CeRhIn$_5$. The Fermi surface i s found to consist of four surfaces: a roughly spherical pocket $beta$, with $F_beta simeq 0.3$ kT; a pillow-shaped closed surface, $alpha$, with $F_alpha simeq 1.1$ kT; and two higher frequencies $gamma_1$ with $F_{gamma_1} simeq 3.2$ kT and $gamma_2$ with $F_{gamma_2} simeq 3.5$ kT that are seen only near the textit{c}-axis, and that may arise on cylindrical Fermi surfaces. The measured cyclotron masses range from 1.9 $m_e$ to 4.3 $m_e$. A simple LDA+SO calculation performed for the paramagnetic ground state shows a very different Fermi surface topology, demonstrating a need for more advanced electronic structure calculations.
We have performed de Haas-van Alphen (dHvA) measurements of the heavy-fermion superconductor CeCoIn$_5$ down to 2 mK above the upper critical field. We find that the dHvA amplitudes show an anomalous suppression, concomitantly with a shift of the dHv A frequency, below the transition temperature $T_{rm n}=20$ mK. We suggest that the change is owing to magnetic breakdown caused by a field-induced antiferromagnetic (AFM) state emerging below $T_{rm n}$, revealing the origin of the field-induced quantum critical point (QCP) in CeCoIn$_5$. The field dependence of $T_{rm n}$ is found to be very weak for 7--10 T, implying that an enhancement of AFM order by suppressing the critical spin fluctuations near the AFM QCP competes with the field suppression effect on the AFM phase. We suggest that the appearance of a field-induced AFM phase is a generic feature of unconventional superconductors, which emerge near an AFM QCP, including CeCoIn$_5$, CeRhIn$_5$, and high-$T_{rm c}$ cuprates.
218 - Kejie Fang , Shanhui Fan 2013
Based on the recently proposed concept of effective gauge potential and magnetic field for photons, we numerically demonstrate a photonic de Haas-van Alphen effect. We show that in a dynamically modulated photonic resonator lattice exhibiting an effe ct magnetic field, the trajectories of the light beam at a given frequency have the same shape as the constant energy contour for the photonic band structure of the lattice in the absence of the effective magnetic field.
The field of topological electronic materials has seen rapid growth in recent years, in particular with the increasing number of weakly interacting systems predicted and observed to host topologically non-trivial bands. Given the broad appearance of topology in such systems, it is expected that correlated electronic systems should also be capable of hosting topologically non-trivial states. Interest in correlated platforms is heightened by the prospect that collective behavior therein may give rise to new types of topological states and phenomena not possible in non-interacting systems. However, to date only a limited number of correlated topological materials have been definitively reported due to both the challenge in calculation of their electronic properties and the experimental complexity of correlation effects imposed on the topological aspects of their electronic structure. Here, we report a de Haas-van Alphen (dHvA) study of the recently discovered kagome metal Fe$_3$Sn$_2$ mapping the massive Dirac states strongly coupled to the intrinsic ferromagnetic order. We observe a pair of quasi-two-dimensional Fermi surfaces arising from the massive Dirac states previously detected by spectroscopic probes and show that these band areas and effective masses are systematically modulated by the rotation of the ferromagnetic moment. Combined with measurements of Berry curvature induced Hall conductivity, we find that along with the Dirac fermion mass, velocity, and energy are suppressed with rotation of the moment towards the kagome plane. These observations demonstrate that strong coupling of magnetic order to electronic structure similar to that observed in elemental ferromagnets can be extended to topologically non-trivial electronic systems, suggesting pathways for connecting topological states to robust spintronic technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا