ﻻ يوجد ملخص باللغة العربية
We report on the results of a de Haas-van Alphen (dHvA) measurement performed on the recently discovered antiferromagnet URhIn$_5$ ($T_N$ = 98 K), a 5textit{f}-analogue of the well studied heavy fermion antiferromagnet CeRhIn$_5$. The Fermi surface is found to consist of four surfaces: a roughly spherical pocket $beta$, with $F_beta simeq 0.3$ kT; a pillow-shaped closed surface, $alpha$, with $F_alpha simeq 1.1$ kT; and two higher frequencies $gamma_1$ with $F_{gamma_1} simeq 3.2$ kT and $gamma_2$ with $F_{gamma_2} simeq 3.5$ kT that are seen only near the textit{c}-axis, and that may arise on cylindrical Fermi surfaces. The measured cyclotron masses range from 1.9 $m_e$ to 4.3 $m_e$. A simple LDA+SO calculation performed for the paramagnetic ground state shows a very different Fermi surface topology, demonstrating a need for more advanced electronic structure calculations.
We have performed de Haas-van Alphen (dHvA) measurements of the heavy-fermion superconductor CeCoIn$_5$ down to 2 mK above the upper critical field. We find that the dHvA amplitudes show an anomalous suppression, concomitantly with a shift of the dHv
We report the results of de-Haas-van-Alphen (dHvA) measurements in Cd doped CeCoIn$_5$ and LaCoIn$_5$. Cd doping is known to induce an antiferromagnetic order in the heavy fermion superconductor CeCoIn$_5$, whose effect can be reversed with applied p
Based on the recently proposed concept of effective gauge potential and magnetic field for photons, we numerically demonstrate a photonic de Haas-van Alphen effect. We show that in a dynamically modulated photonic resonator lattice exhibiting an effe
We report the angular dependence of three distinct de Haas-van Alphen (dHvA) frequencies of the torque magnetization in the itinerant antiferromagnet CrB2 at temperatures down to 0.3K and magnetic fields up to 14T. Comparison with the calculated Ferm
The field of topological electronic materials has seen rapid growth in recent years, in particular with the increasing number of weakly interacting systems predicted and observed to host topologically non-trivial bands. Given the broad appearance of