ﻻ يوجد ملخص باللغة العربية
We report the theoretical study of the flux-lattice melting in the novel iron-based superconductor $LaO_{0.9}F_{0.1}FeAs$ and $LaO_{0.925}F_{0.075}FeAs$. Using the Hypernetted-Chain closure and an efficient algorithm, we calculate the two-dimensional one-component plasma pair distribution functions, static structure factors and direct correlation functions at various temperatures. The Hansen-Verlet freezing criterion is shown to be valid for vortex-liquid freezing in type-II superconductors. Flux-lattice meting lines for $LaO_{0.9}F_{0.1}FeAs$ and $LaO_{0.925}F_{0.075}FeAs$ are predicted through the combination of the density functional theory and the mean-field substrate approach.
Using state-of-the-art first-principles calculations we study the magnetic behaviour of CeOFeAs. We find the Ce layer moments oriented perpendicular to those of the Fe layers. An analysis of incommensurate magnetic structures reveals that the Ce-Ce m
Raman spectra have been measured on iron-based quaternary CeO$_{1-x}$F$_x$FeAs and LaO$_{1-x}$F$_x$FeAs with varying fluorine doping at room temperatures. A group analysis has been made to clarify the optical modes. Based on the first principle calcu
We report the first Nernst effect measurement on the new iron-based superconductor LaO$_{1-x}$F$_{x}$FeAs $(x=0.1)$. In the normal state, the Nernst signal is negative and very small. Below $T_{c}$ a large positive peak caused by vortex motion is obs
We report density functional theory calculations for the parent compound LaOFeAs of the newly discovered 26K Fe-based superconductor LaO$_{1-x}$F$_x$FeAs. We find that the ground state is an ordered antiferromagnet, with staggered moment about 2.3$mu
We report far-infrared reflectance measurements on polycrystalline superconducting samples of SmO$_{1-x}$F$_{x}$FeAs ($x$ = 0.12, 0.15 and 0.2). We clearly observe superconductivity induced changes of reflectivity in a broad range of energies, which