ترغب بنشر مسار تعليمي؟ اضغط هنا

Proximity of antiferromagnetism and superconductivity in LaO$_{1-x}$F$_x$FeAs: effective Hamiltonian from ab initio studies

339   0   0.0 ( 0 )
 نشر من قبل Hai-Ping Cheng
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report density functional theory calculations for the parent compound LaOFeAs of the newly discovered 26K Fe-based superconductor LaO$_{1-x}$F$_x$FeAs. We find that the ground state is an ordered antiferromagnet, with staggered moment about 2.3$mu_B$, on the border with the Mott insulating state. We fit the bands crossing the Fermi surface, derived from Fe and As, to a tight-binding Hamiltonian using maximally localized Wannier functions on Fe 3d and As 4p orbitals. The model Hamiltonian accurately describes the Fermi surface obtained via first-principles calculations. Due to the evident proximity of superconductivity to antiferromagnetism and the Mott transition, we suggest that the system may be an analog of the electron doped cuprates, where antiferromagnetism and superconductivity coexist.



قيم البحث

اقرأ أيضاً

189 - S. C. Zhao , D. Hou , Y. Wu 2008
Raman spectra have been measured on iron-based quaternary CeO$_{1-x}$F$_x$FeAs and LaO$_{1-x}$F$_x$FeAs with varying fluorine doping at room temperatures. A group analysis has been made to clarify the optical modes. Based on the first principle calcu lations, the observed phonon modes can be assigned accordingly. In LaO$_{1-x}$F$_x$FeAs, the E$_g$ and A$_{1g}$ modes related to the vibrations of La, are suppressed with increasing F doping. However F doping only has a small effect on the E$_g$ and A$_{1g}$ modes of Fe and As. The Raman modes of La and As are absent in rare-earth substituted CeO$_{1-x}$F$_x$FeAs, and the E$_g$ mode of oxygen, corresponding to the in-plane vibration of oxygen, moves to around 450 cm$^{-1}$ and shows a very sharp peak. Electronic scattering background is low and electron-phonon coupling is not evident for the observed phonon modes. Three features are found above 500 cm$^{-1}$, which may be associated with multi-phonon process. Nevertheless it is also possible that they are related to magnetic fluctuations or interband transitions of d orbitals considering their energies.
207 - S. Sharma 2009
Using state-of-the-art first-principles calculations we study the magnetic behaviour of CeOFeAs. We find the Ce layer moments oriented perpendicular to those of the Fe layers. An analysis of incommensurate magnetic structures reveals that the Ce-Ce m agnetic coupling is rather weak with, however, a strong Fe-Ce coupling. Comparison of the origin of the tetragonal to orthorhombic structural distortion in CeOFeAs and LaOFeAs show marked differences; in CeOFeAs the distortion is stabilized by a lowering of spectral weight at the Fermi level, while in LaOFeAs by a reduction in magnetic frustration. Finally, we investigate the impact of electron doping upon CeOFeAs and show that while the ground state Fe moment remains largely unchanged by doping, the stability of magnetic order goes to zero at a doping that corresponds well to the vanishing of the Neel temperature.
254 - Z. W. Zhu , Z. A. Xu , X. Lin 2008
We report the first Nernst effect measurement on the new iron-based superconductor LaO$_{1-x}$F$_{x}$FeAs $(x=0.1)$. In the normal state, the Nernst signal is negative and very small. Below $T_{c}$ a large positive peak caused by vortex motion is obs erved. The flux flowing regime is quite large compared to conventional type-II superconductors. However, a clear deviation of the Nernst signal from normal state background and an anomalous depression of off-diagonal thermoelectric current in the normal state between $T_{c}$ and 50 K are observed. We propose that this anomaly in the normal state Nernst effect could correlate with the SDW fluctuations.
267 - H.-J. Grafe , D. Paar , G. Lang 2008
We have performed 75As Nuclear Magnetic Resonance (NMR) measurements on aligned powders of the new LaO0.9F0.1FeAs superconductor. In the normal state, we find a strong temperature dependence of the spin shift and Korringa behavior of the spin lattice relaxation rate. In the superconducting state, we find evidence for line nodes in the superconducting gap and spin-singlet pairing. Our measurements reveal a strong anisotropy of the spin lattice relaxation rate, which suggest that superconducting vortices contribute to the relaxation rate when the field is parallel to the c-axis but not for the perpendicular direction.
High resolution photoemission measurements have been carried out on non-superconducting SmOFeAs parent compound and superconducting Sm(O$_{1-x}$F$_x$)FeAs (x=0.12, and 0.15) compounds. The momentum-integrated spectra exhibit a clear Fermi cutoff that shows little leading-edge shift in the superconducting state which suggests the Fermi surface sheet(s) around the $Gamma$ point may not be gapped in this multiband superconductors. A robust feature at 13 meV is identified in all these samples. Spectral weight suppression near E$_F$ with decreasing temperature is observed in both undoped and doped samples that points to a possible existence of a pseudogap in these Fe-based compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا