ﻻ يوجد ملخص باللغة العربية
Due to the broadcast nature of the wireless medium, wireless communication is susceptible to adversarial eavesdropping. This paper describes how eavesdropping can potentially be defeated by exploiting the superposition nature of the wireless medium. A Gaussian wire-tap channel with a helping interferer (WTC-HI) is considered in which a transmitter sends confidential messages to its intended receiver in the presence of a passive eavesdropper and with the help of an interferer. The interferer, which does not know the confidential message assists the confidential message transmission by sending a signal that is independent of the transmitted message. An achievable secrecy rate and a Sato-type upper bound on the secrecy capacity are given for the Gaussian WTC-HI. Through numerical analysis, it is found that the upper bound is close to the achievable secrecy rate when the interference is weak for symmetric interference channels, and under more general conditions for asymmetric Gaussian interference channels.
End-to-end learning of communication systems with neural networks and particularly autoencoders is an emerging research direction which gained popularity in the last year. In this approach, neural networks learn to simultaneously optimize encoding an
We study the secrecy capacity of a helper-assisted Gaussian wiretap channel with a source, a legitimate receiver, an eavesdropper and an external helper, where each terminal is equipped with multiple antennas. Determining the secrecy capacity in this
We propose a new scheme of wiretap lattice coding that achieves semantic security and strong secrecy over the Gaussian wiretap channel. The key tool in our security proof is the flatness factor which characterizes the convergence of the conditional o
In this work, we consider a K-user Gaussian wiretap multiple-access channel (GW-MAC) in which each transmitter has an independent confidential message for the receiver. There is also an external eavesdropper who intercepts the communications. The goa
Finite-length codes are learned for the Gaussian wiretap channel in an end-to-end manner assuming that the communication parties are equipped with deep neural networks (DNNs), and communicate through binary phase-shift keying (BPSK) modulation scheme