ﻻ يوجد ملخص باللغة العربية
In order to reduce the difficulties in the experimental realizations of the cloak but still keep good performance of invisibility, we proposed a perfect cylindrical invisibility cloak with spatially invariant axial material parameters. The advantage of this kind of TE (or TM) cloak is that only rho and phi components of mu (or epsilon) are spatially variant, which makes it possible to realize perfect invisibility with two-dimensional (2D) magnetic (or electric) metamaterials. The effects of perturbations of the parameters on the performance of this cloak are quantitatively analyzed by scattering theory. Our work provides a simple and feasible solution to the experimental realization of cloaks with ideal parameters.
We investigate the scattering of 2D cylindrical invisibility cloaks with simplified constitutive parameters with the assistance of scattering coefficients. We show that the scattering of the cloaks originates not only from the boundary conditions but
We study the behavior of wave propagation in materials for which not all of the principle elements of the permeability and permittivity tensors have the same sign. We find that a wide variety of effects can be realized in such media, including negati
Cloaking using a volumetric structure composed of stacked two-dimensional transmission-line networks is verified with measurements. The measurements are done in a waveguide, in which an array of metallic cylinders is inserted causing a short-circuit
Radio, millimetre and sub-millimetre astronomy experiments as well as remote sensing applications often require castable absorbers with well known electromagnetic properties to design and realize calibration targets. In this context, we fabricated an
A kind of transformation media, which we shall call the anti-cloak, is proposed to partially defeat the cloaking effect of the invisibility cloak. An object with an outer shell of anti-cloak is visible to the outside if it is coated with the invisibl