ﻻ يوجد ملخص باللغة العربية
We investigate the scattering of 2D cylindrical invisibility cloaks with simplified constitutive parameters with the assistance of scattering coefficients. We show that the scattering of the cloaks originates not only from the boundary conditions but also from the spatial variation of the component of permittivity/permeability. According to our formulation, we propose some restrictions to the invisibility cloak in order to minimize its scattering after the simplification has taken place. With our theoretical analysis, it is possible to design a simplified cloak by using some peculiar composites like photonic crystals (PCs) which mimic an effective refractive index landscape rather than offering effective constitutives, meanwhile canceling the scattering from the inner and outer boundaries.
We propose one kind of transformation functions for nonmagnetic invisibility cloak with minimized scattering on the basis of generalized transformation. By matching the impedance at the outer surface of the cloak, the transformations with two paramet
An elliptical invisible cloak is proposed using a coordinate transformation in the elliptical-cylindrical coordinate system, which crushes the cloaked object to a line segment instead of a point. The elliptical cloak is reduced to a nearly-circular c
We demonstrate in this letter a unique approach for watching outside while hiding in a carpet cloaking based on transformation optics. Unlike conventional carpet cloaking, which screens all the incident electromagnetic waves, we break the cloak and a
The method of coordinate transformation offers a way to realize perfect cloaks, but provides less ability to characterize the performance of a multilayered cloak in practice. Here, we propose an analytical model to predict the performance of a multil
Based on the concept of complementary media, we propose an invisibility cloak operating at a finite frequency that can cloak an object with a pre-specified shape and size within a certain distance outside the shell. The cloak comprises of a dielectri