ﻻ يوجد ملخص باللغة العربية
We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect a discrete set of steps in the well population for increasing bias potentials. These correspond to tunneling resonances where the atom number on each side of the barrier changes one by one. This allows us to count and control the number of atoms within a given well. By evaluating the amplitude of the different plateaus, we can fully determine the number distribution of the atoms in the lattice, which we demonstrate for the case of a superfluid and Mott insulating regime of 87Rb.
More than 30 years ago, Thouless introduced the concept of a topological charge pump that would enable the robust transport of charge through an adiabatic cyclic evolution of the underlying Hamiltonian. In contrast to classical transport, the transpo
We analyze the possibility to prepare a Heisenberg antiferromagnet with cold fermions in optical lattices, starting from a band insulator and adiabatically changing the lattice potential. The numerical simulation of the dynamics in 1D allows us to id
We present an experimental method to create a single high frequency optical trap for atoms based on an elongated Hermite-Gaussian TEM01 mode beam. This trap results in confinement strength similar to that which may be obtained in an optical lattice.
We consider a pair of artificial atoms with different ground state energies. By means of finite element calculations we predict that the ground state energies can be tuned into resonance if the artificial atoms are placed into a flexible ring structu
Over the past few years we have built an apparatus to demonstrate the entanglement of neutral Rb atoms at optically resolvable distances using the strong interactions between Rydberg atoms. Here we review the basic physics involved in this process: l