ﻻ يوجد ملخص باللغة العربية
More than 30 years ago, Thouless introduced the concept of a topological charge pump that would enable the robust transport of charge through an adiabatic cyclic evolution of the underlying Hamiltonian. In contrast to classical transport, the transported charge was shown to be quantized and purely determined by the topology of the pump cycle, making it robust to perturbations. On a fundamental level, the quantized charge transport can be connected to a topological invariant, the Chern number, first introduced in the context of the integer quantum Hall effect. A Thouless quantum pump may therefore be regarded as a dynamical version of the integer quantum Hall effect. Here, we report on the realization of such a topological charge pump using ultracold bosonic atoms that form a Mott insulator in a dynamically controlled optical superlattice potential. By taking in-situ images of the atom cloud, we observe a quantized deflection per pump cycle. We reveal the genuine quantum nature of the pump by showing that, in contrast to ground state particles, a counterintuitive reversed deflection occurs when particles are prepared in the first excited band. Furthermore, we were able to directly demonstrate that the system undergoes a controlled topological phase transition in higher bands when tuning the superlattice parameters.
We study the quasiadiabatic dynamics of a one-dimensional system of ultracold bosonic atoms loaded in an optical superlattice. Focusing on a slow linear variation in time of the superlattice potential, the system is driven from a conventional Mott in
We propose a two-dimensional (2D) version of Thouless pumping that can be realized by using ultracold atoms in optical lattices. To be specific, we consider a 2D square lattice tight-binding model with an obliquely introduced superlattice. It is demo
Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have the potential to exponentially speed up information processing. Thermal fluctuations are negligible and quantum effects govern the behavi
We propose a scheme for quantum computation in optical lattices. The qubits are encoded in the spacial wavefunction of the atoms such that spin decoherence does not influence the computation. Quantum operations are steered by shaking the lattice whil
Coherent control via periodic modulation, also known as Floquet engineering, has emerged as a powerful experimental method for the realization of novel quantum systems with exotic properties. In particular, it has been employed to study topological p