ﻻ يوجد ملخص باللغة العربية
Since there are dark matter particles (neutrino) with mass about 10^(-1)eV in the universe, the superstructures with a scale of 10^(19) solar mass [large number A is about 10^(19)] appeared around the era of the hydrogen recombination. The redshift z distributions of quasars support the existence of superstructures. Since there are superstructures in the universe, it is not necessary for the hypothesis of dark energy. While neutrino is related to electro-weak field, the fourth stable elementary particles (delta particle) with mass about 10^(0)eV to 10^(1)eV is related to gravitation-strong field, which suggests p + anti(p)--> n/anti(n) + anti(delta particle)/(delta particle) and that some new meta-stable baryons appeared near the TeV region. Therefore, a twofold standard model diagram is proposed, and related to many experiment phenomena: The new meta-stable baryons decays produce delta particles, which are helpful to explain the Dijet asymmetry phenomena at LHC of CERN, the different results for the Fermilabs data peak, etc; However, according to the (B-L) invariance, the sterile neutrino from the event excess in MiniBooNe can not be the fourth neutrino but rather the delta particle; We think that the delta particles are related to the phenomenon about neutrinos FTL, and that anti-neutrinos are faster than neutrinos. FTL is also related to the cosmic inflation, singular point disappearance, and abnormal red shift of SN Ia. Some experiments and observations are suggested. In the Extension section, we clarify mass tree, our finite universe, cosmic dual expansions, dual SM etc. And the LHC can look for new particles with decay products graviton/delta particle and new interaction indeed.
From the observed results of the space distribution of quasars we deduced that neutrino mass is about 10^(-1) eV. The fourth stable elementary particle (delta particle) with mass about 10^(0) eV can help explain the energy resource mechanism in quasa
We extend mass scale sequence to a mass tree. From mass tree, the evolution of the universe is described by three stages: chaos, inflation and expansion. The first two stages have c mutations and the inflation appears as a step by step fission proces
A cosmological model of an holographic dark energy interacting with dark matter throughout a decaying term of the form $Q=3(lambda_1rho_{DE} + lambda_2rho_m) H$ is investigated. General constraint on the parameters of the model are found when acceler
In an expanding universe the vacuum energy density rho_{Lambda} is expected to be a dynamical quantity. In quantum field theory in curved space-time rho_{Lambda} should exhibit a slow evolution, determined by the expansion rate of the universe H. Rec
In warm dark matter scenarios structure formation is suppressed on small scales with respect to the cold dark matter case, reducing the number of low-mass halos and the fraction of ionized gas at high redshifts and thus, delaying reionization. This h