ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of X-ray Flares from Gamma Ray Bursts

101   0   0.0 ( 0 )
 نشر من قبل Abraham Falcone
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Swift-XRT observations of the X-ray emission from gamma ray bursts (GRBs) and during the GRB afterglow have led to many new results during the past two years. One of these exciting results is that approximately 1/3-1/2 of GRBs contain detectable X-ray flares. The mean fluence of the X-ray flares is ~10 times less than that of the initial prompt emission, but in some cases the flare is as energetic as the prompt emission itself. The flares display fast rises and decays, and they sometimes occur at very late times relative to the prompt emission (sometimes as late as 10^5 s after T_0) with very high peak fluxes relative to the underlying afterglow decay that has clearly begun prior to some flares. The temporal and spectral properties of the flares are found to favor models in which flares arise due to the same GRB internal engine processes that spawned the prompt GRB emission. Therefore, both long and short GRB internal engine models must be capable of producing high fluences in the X-ray band at very late times.



قيم البحث

اقرأ أيضاً

We present predictions of centimeter and millimeter radio emission from reverse shocks in the early afterglows of gamma-ray bursts with the goal of determining their detectability with current and future radio facilities. Using a range of GRB propert ies, such as peak optical brightness and time, isotropic equivalent gamma-ray energy and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parametrization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. (2007) and Melandri et al. (2010) in which the typical frequency of the reverse shock was suggested to lie at radio, rather than optical wavelengths at early times, we show that the brightest and most distinct reverse-shock radio signatures are detectable up to 0.1 -- 1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects - typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical reverse-shock emission, we suggest that detection of polarized radio/mm emission will unambiguously confirm the presence of low-frequency reverse shocks at early time.
The discovery of long-lasting (~100 s) X-ray flares following short gamma-ray bursts initially called into question whether they were truly classical short-hard bursts. Opinion over the last few years has coalesced around the view that the short-hard bursts arise from the merger of pairs of neutron stars, or a neutron star merging with a stellar-mass black hole. The natural timescales associated with these processes, however, essentially preclude an X-ray flare lasting ~100 s. Here we show that an interaction between the GRB outflow and a non-compact stellar companion at a distance of ~a light-minute provides a natural explanation for the flares. In the model, the burst is triggered by the collapse of a neutron star after accreting matter from the companion. This is reminiscent of type Ia supernovae, where there is a wide distribution of delay times between formation and explosion, leading to an association with both star-forming galaxies and old ellipticals.
We illustrate some of the preliminary results obtained with a new sample of flares and a new analysis. In these proceedings we deal mainly with the analysis related to the flare energy and describe the work in progress to measure the average flare lu minosity curve. We discuss in brief GRB050904 and GRB050724 for matters relevant to this work. In particular we measure the contribution given to the flares by GRB050904 and give a new interpretation for the decaying early XRT light curve of GRB050724. We briefly illustrate the first evidence that the early decay is given by the subsequent emission of events with Width/TPeak < 1 and the total energy of these events is larger than the energy emitted during the prompt emission spike showing, indeed, that not only the central engine may still be active after hundreds of seconds of the first spike but that this may still be part of the prompt emission.
107 - P.A. Curran 2008
Previously detected in only a few gamma-ray bursts (GRBs), X-ray flares are now observed in ~50% of Swift GRBs, though their origins remain unclear. Most flares are seen early on in the afterglow decay, while some bursts exhibit flares at late times of 10^4 to 10^5 seconds, which may have implications for flare models.We investigate whether a sample of late time (> 10^4s) flares are different from previous samples of early time flares, or whether they are merely examples on the tail of the early flare distribution. We examine the X-ray light curves of Swift bursts for late flares and compare the flare and underlying temporal power-law properties with those of early flares, and the values of these properties predicted by the blast wave model. The burst sample shows late flare properties consistent with those of early flares, where the majority of the flares can be explained by either internal or external shock, though in a few cases one origin is favoured over the other. The underlying power laws are mainly consistent with the normal decay phases of the afterglow. If confirmed by the ever growing sample of late time flares, this would imply that, in some cases, prolonged activity out to a day or a restarting of the central engine is required.
477 - John Heise , Jean in t Zand 2001
We discuss three classes of x-ray transients to highlight three new types of transients found with the Wide Field Cameras onboard BeppoSAX. First there are the transients related to Low Mass X-ray Binaries in outburst, typically lasting weeks to mont hs and reaching luminosities of the Eddington limit for a few solar masses. Recently another subclass of outbursts in such binaries has been discovered, which are an order of magnitude fainter and last shorter than typical hours to days. We discuss whether they constitute a separate subset of x-ray binaries. A second class of x-ray transients are the x-ray bursts. Thermonuclear explosions on a neutron star (type I x-ray bursts) usually last of order minutes or less. We discovered a second type (called super x-ray bursts) with a duration of several hours. They relate to thermonuclear detonations much deeper in the neutron star atmosphere, possibly burning on the nuclear ashes of normal x-ray bursts. The third class are the enigmatic Fast X-ray Transients occurring at all galactic latitudes. We found that the bright ones are of two types only: either nearby coronal sources (lasting hours) or the socalled x-ray flashes (lasting minutes). The new class, the X-ray flashes, may be a new type of cosmic explosion, intermediate between supernovae and gamma ray bursts, or they may be highly redshifted gamma ray bursts. It thus appears that the three classes of x-ray transients each come in two flavors: long and short.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا