ﻻ يوجد ملخص باللغة العربية
There is an interesting property about multipartite entanglement, called the monogamy of entanglement. The property can be shown by the monogamy inequality, called the Coffman-Kundu-Wootters inequality [Phys. Rev. A {bf 61}, 052306 (2000); Phys. Rev. Lett. {bf 96}, 220503 (2006)], and more explicitly by the monogamy equality in terms of the concurrence and the concurrence of assistance, $mathcal{C}_{A(BC)}^2=mathcal{C}_{AB}^2+(mathcal{C}_{AC}^a)^2$, in the three-qubit system. In this paper, we consider the monogamy equality in $2otimes 2 otimes d$ quantum systems. We show that $mathcal{C}_{A(BC)}=mathcal{C}_{AB}$ if and only if $mathcal{C}_{AC}^a=0$, and also show that if $mathcal{C}_{A(BC)}=mathcal{C}_{AC}^a$ then $mathcal{C}_{AB}=0$, while there exists a state in a $2otimes 2 otimes d$ system such that $mathcal{C}_{AB}=0$ but $mathcal{C}_{A(BC)}>mathcal{C}_{AC}^a$.
We revisit qubit-qutrit quantum systems under collective dephasing and answer some of the questions which have not been asked and addressed so far in the literature. In particular, we examine the possibilities of non-trivial phenomena of {it time-inv
Absolute separable states is a kind of separable state that remain separable under the action of any global unitary transformation. These states may or may not have quantum correlation and these correlations can be measured by quantum discord. We fin
A local numerical range is analyzed for a family of circulant observables and states of composite $2 otimes d$ systems. It is shown that for any $2otimes d$ circulant operator $cal O$ there exists a basis giving rise to the matrix representation with
The quantum steering ellipsoid can be used to visualise two-qubit states, and thus provides a generalisation of the Bloch picture for the single qubit. Recently, a monogamy relation for the volumes of steering ellipsoids has been derived for pure 3-q
We investigate the monogamy relations related to the concurrence and the entanglement of formation. General monogamy inequalities given by the {alpha}th power of concurrence and entanglement of formation are presented for N-qubit states. The monogamy