ﻻ يوجد ملخص باللغة العربية
Absolute separable states is a kind of separable state that remain separable under the action of any global unitary transformation. These states may or may not have quantum correlation and these correlations can be measured by quantum discord. We find that the absolute separable states are useful in quantum computation even if it contains infinitesimal quantum correlation in it. Thus to search for the class of two-qubit absolute separable states with zero discord, we have derived an upper bound for $Tr(varrho^{2})$, where $varrho$ denoting all zero discord states. In general, the upper bound depends on the state under consideration but if the state belong to some particular class of zero discord states then we found that the upper bound is state independent. Later, it is shown that among these particular classes of zero discord states, there exist sub-classes which are absolutely separable. Furthermore, we have derived necessary conditions for the separability of a given qubit-qudit states. Then we used the derived conditions to construct a ball for $2otimes d$ quantum system described by $Tr(rho^{2})leq Tr(X^{2})+2Tr(XZ)+Tr(Z^{2})$, where the $2otimes d$ quantum system is described by the density operator $rho$ which can be expressed by block matrices $X,Y$ and $Z$ with $X,Zgeq 0$. In particular, for qubit-qubit system, we show that the newly constructed ball contain larger class of absolute separable states compared to the ball described by $Tr(rho^{2})leq frac{1}{3}$. Lastly, we have derived the necessary condition in terms of purity for the absolute separability of a qubit-qudit system under investigation.
In this paper, based on a matrix norm, we first present a ball of separable unnormalized states around the identity matrix for the bipartite quantum system, which is larger than the separable ball in Frobenius norm. Then the proposed ball is used to
Entangled states are undoubtedly an integral part of various quantum information processing tasks. On the other hand, absolutely separable states which cannot be made entangled under any global unitary operations are useless from the resource theoret
We introduce a super-sensitive phase measurement technique that yields the Heisenberg limit without using either a squeezed state or a many-particle entangled state. Instead, we use a many-particle separable quantum state to probe the phase and we th
We present a necessary and sufficient condition for the separability of multipartite quantum states, this criterion also tells us how to write a multipartite separable state as a convex sum of separable pure states. To work out this criterion, we nee
Two-photon states entangled in continuous variables such as wavevector or frequency represent a powerful resource for quantum information protocols in higher-dimensional Hilbert spaces. At the same time, there is a problem of addressing separately th