ترغب بنشر مسار تعليمي؟ اضغط هنا

Limit of the Solutions for the Finite Horizon Problems as the Optimal Solution to the Infinite Horizon Optimization Problems

153   0   0.0 ( 0 )
 نشر من قبل Dapeng Cai
 تاريخ النشر 2008
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to generalize the results of Cai and Nitta (2007) by allowing both the utility and production function to depend on time. We also consider an additional intertemporal optimality criterion. We clarify the conditions under which the limit of the solutions for the finite horizon problems is optimal among all attainable paths for the infinite horizon problems under the overtaking criterion, as well as the conditions under which such a limit is the unique optimum under the sum-of-utilities criterion. The results are applied to a parametric example of the one-sector growth model to examine the impacts of discounting on optimal paths.



قيم البحث

اقرأ أيضاً

We aim to construct the optimal solutions to the undiscounted continuous-time infinite horizon optimization problems, the objective functionals of which may be unbounded. We identify the condition under which the limit of the solutions to the finite horizon problems is optimal for the infinite horizon problems under the overtaking criterion.
Infinite horizon optimization problems accompany two perplexities. First, the infinite series of utility sequences may diverge. Second, boundary conditions at the infinite terminal time may not be rigorously expressed. In this paper, we show that und er two fairly general conditions, the limit of the solution to the undiscounted finite horizon problem is optimal among feasible paths for the undiscounted infinite horizon problem, in the sense of the overtaking criterion. Applied to a simple Ramsey model, we show that the derived path contains intriguing properties. We also comprehend the legitimacy of the derived paths by addressing the perplexities with non-standard arguments.
212 - Xiongfei Jian , Xun Li , Fahuai Yi 2014
In this paper, we investigate dynamic optimization problems featuring both stochastic control and optimal stopping in a finite time horizon. The paper aims to develop new methodologies, which are significantly different from those of mixed dynamic op timal control and stopping problems in the existing literature, to study a managers decision. We formulate our model to a free boundary problem of a fully nonlinear equation. Furthermore, by means of a dual transformation for the above problem, we convert the above problem to a new free boundary problem of a linear equation. Finally, we apply the theoretical results to challenging, yet practically relevant and important, risk-sensitive problems in wealth management to obtain the properties of the optimal strategy and the right time to achieve a certain level over a finite time investment horizon.
80 - C^ome Hure 2018
This paper develops algorithms for high-dimensional stochastic control problems based on deep learning and dynamic programming. Unlike classical approximate dynamic programming approaches, we first approximate the optimal policy by means of neural ne tworks in the spirit of deep reinforcement learning, and then the value function by Monte Carlo regression. This is achieved in the dynamic programming recursion by performance or hybrid iteration, and regress now methods from numerical probabilities. We provide a theoretical justification of these algorithms. Consistency and rate of convergence for the control and value function estimates are analyzed and expressed in terms of the universal approximation error of the neural networks, and of the statistical error when estimating network function, leaving aside the optimization error. Numerical results on various applications are presented in a companion paper (arxiv.org/abs/1812.05916) and illustrate the performance of the proposed algorithms.
Optimally solving a multi-armed bandit problem suffers the curse of dimensionality. Indeed, resorting to dynamic programming leads to an exponential growth of computing time, as the number of arms and the horizon increase. We introduce a decompositio ncoordination heuristic, DeCo, that turns the initial problem into parallelly coordinated one-armed bandit problems. As a consequence, we obtain a computing time which is essentially linear in the number of arms. In addition, the decomposition provides a theoretical lower bound on the regret. For the two-armed bandit case, dynamic programming provides the exact solution, which is almost matched by the DeCo heuristic. Moreover, in numerical simulations with up to 100 rounds and 20 arms, DeCo outperforms classic algorithms (Thompson sampling and Kullback-Leibler upper-confidence bound) and almost matches the theoretical lower bound on the regret for 20 arms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا