ﻻ يوجد ملخص باللغة العربية
The calculation presented in A neoclassical calculation of rotation profiles and comparison with DIII-D measurements by Stacey, Johnson, and Mandrekas, [Physics of Plasmas, 13, (2006)], contains several errors, including the neglect of the toroidal electric field, an unphysical expression for the electrostatic potential, and an unevaluated relation among its parameters. An alternative formulation is discussed.
The physical processes taking place at the edge region are crucial for the operation of tokamaks as they govern the interaction of hot plasma with the vessel walls. Numerical modeling of the edge with state-of-the-art codes attempts to elucidate inte
Extended-MHD modeling of DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] quiescent H-mode (QH-mode) discharges with nonlinear NIMROD [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)] simulations saturates into a turbulent state but d
The toroidal phase and rotation of otherwise locked magnetic islands of toroidal mode number n=1 are controlled in the DIII-D tokamak by means of applied magnetic perturbations of n=1. Pre-emptive perturbations were applied in feedforward to catch th
Alfven Eigenmodes and magneto-hydrodynamic modes are destabilized in DIII-D reverse magnetic shear configurations and may limit the performance of the device. We use the reduced MHD equations in a full 3D system, coupled with equations of density and
The free-streaming plus recycling model (FSRM) has recently been developed to understand and predict tungsten gross erosion rates from the divertor during edge localized modes (ELMs). In this work, the FSRM was tested against experimental measurement