ﻻ يوجد ملخص باللغة العربية
The free-streaming plus recycling model (FSRM) has recently been developed to understand and predict tungsten gross erosion rates from the divertor during edge localized modes (ELMs). In this work, the FSRM was tested against experimental measurements of W sputtering during ELMs, conducted via fast WI spectroscopy. Good agreement is observed using a variety of controlling techniques, including gas puffing, neutral beam heating, and plasma shaping to modify the pedestal stability boundary and thus the ELM behavior. ELM mitigation by pellet pacing was observed to strongly reduce W sputtering by flushing C impurities from the pedestal and reducing the divertor target electron temperature. No reduction of W sputtering was observed during the application of resonant magnetic perturbations (RMPs), in contrast to the prediction of the FSRM. Potential sources of this discrepancy are discussed. Finally, the framework of the FSRM is utilized to predict intra-ELM W sputtering rates in ITER. It is concluded that W erosion during ELMs in ITER will be caused mainly by free-streaming fuel ions, but free-streaming seeded impurities (N or Ne) may increase the erosion rate significantly if present in the pedestal at even the 1% level. Impurity recycling is not expected to cause significant W erosion in ITER due to the very low target electron temperature.
The guiding-center kinetic neoclassical transport code, XGC0, [C.S. Chang et. al, Phys. Plasmas 11, 2649 (2004)] is used to compute the heat fluxes and the heat-load width in the outer divertor plates of Alcator C-Mod and DIII-D tokamaks. The depende
For understanding carbon erosion and redeposition in nuclear fusion devices, it is important to understand the transport and chemical break-up of hydrocarbon molecules in edge plasmas, often diagnosed by emission of the CH A^2Delta - X^2Pi Gero band
We report on the impact of anisotropy to tokamak plasma configuration and stability. Our focus is on analysis of the impact of anisotropy on ITER pre-fusion power operation 5~MA, $B=1.8$~T ICRH scenarios. To model ITER scenarios remapping tools are d
The XGC1 edge gyrokinetic code is used for a high fidelity prediction for the width of the heat-flux to divertor plates in attached plasma condition. The simulation results are validated against the empirical scaling $lambda_q propto B_P^{-gamma}$ ob
The distribution of particles and power to plasma-facing components is of key importance in the design of next-generation fusion devices. Power and particle decay lengths have been measured in a number of MAST L-mode and H-mode discharges in order to